Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 056102    DOI: 10.1088/1674-1056/21/5/056102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High stability of the goldalloy fullerenes:A density functional theory investigation of M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters

Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), Zhang Hong-Yu(张红雨), and Luo You-Hua(罗有华)
Department of Physics, East China University of Science and Technology, Shanghai 200237, China
Abstract  Discovering highly stable metal fullerenes such as the celebrated C60 is interesting in cluster science as they have potential applications as building blocks in new nanostructures. We here investigated the structural and electronic properties of the fullerenes M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and Au), using a first-principles investigation with the density functional theory. It is found that these compound clusters possess a similar cage structure to the icosahedral Au32 fullerene. La12@Au20 is found to be particularly stable among these clusters. The binding energy of La12@Au20 is 3.43 eV per atom, 1.05 eV larger than that in Au32. The highest occupied molecular orbital--lowest unoccupied molecular orbital (HOMO--LUMO) gap of La12@Au20 is only 0.31 eV, suggesting that it should be relatively chemically reactive.
Keywords:  nanostructures      gold fullerenes      density functional theory  
Received:  14 January 2012      Revised:  27 April 2012      Accepted manuscript online: 
PACS:  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
  61.46.Bc (Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely aggregated or loosely attached to a substrate))  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11104075) and the Fundamental Research Funds for the Central Universities of China (Grant No. WM0911005).

Cite this article: 

Zhang Meng(张孟), Feng Xiao-Juan(冯晓娟), Zhao Li-Xia(赵丽霞), Zhang Hong-Yu(张红雨), and Luo You-Hua(罗有华) High stability of the goldalloy fullerenes:A density functional theory investigation of M12@Au20 (M=Na, Al, Ag, Sc, Y, La, Lu, and Au) clusters 2012 Chin. Phys. B 21 056102

[1] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[2] Häkkinen H, Barnet R N, Scherbakov A G and Landman U 2000 J. Phys. Chem. B 104 9063
[3] Wang J, Wan G and Zhao J 2002 Phys. Rev. B 66 035418
[4] Häkkinen H, Yoon B, Landman U, Li X, Zhai H J and Wang L S 2003 J. Phys. Chem. A 107 6168
[5] Li J, Li X, Zhai H J and Wang L S 2003 Science 299 864
[6] Pyykkö P 2004 Angew. Chem. Int. Ed. 43 4412
[7] Fa W, Luo C F and Dong J M 2005 Phys. Rev. B 72 205428
[8] Luo C F, Fa W and Dong J M 2006 J. Chem. Phys. 125 084707
[9] Remacle F and Kryachko E S 2005 J. Chem. Phys. 122 044304
[10] Olson R M, Varganov S, Gordon M S, Metiu H, Chretien S, Piecuch P, Kowalski K, Kucharski S A and Musial M 2005 J. Am. Chem. Soc. 127 1049
[11] Walker A V 2005 J. Chem. Phys. 122 94310
[12] Han Y K 2006 J. Chem. Phys. 124 024316
[13] Wei F and Dong J M 2006 J. Chem. Phys. 124 114310
[14] Bulusu S, Li X, Wang L S and Zeng X C 2006 Proc. Natl. Acad. Sci. USA 103 8326
[15] Gruene P, Rayner D M, Redlich B, van der Meer A F G, Lyon J T, Meijer G and Fielicke A 2008 Science 321 674
[16] Pyykkö P 2008 Chem. Soc. Rev 37 1967
[17] Wang J, Ning H, Ma Q M, Liu Y and Li Y C 2008 J. Chem. Phys. 129 134705
[18] Häkkinen H 2008 Chem. Soc. Rev. 37 1847
[19] Huang W and Wang L S 2009 Phys. Rev. Lett. 102 153401
[20] Johansson M P, Sundholm D and Vaara J 2004 Angew. Chem. Int. Ed. 43 2678
[21] Gu X, Ji M, Wei S H and Gong X G 2004 Phys. Rev. B 70 205401
[22] Ji M, Gu X, Li X, Gong X G, Li J and Wang L S 2005 Angew. Chem. Int. Ed. 44 7119
[23] Karttunen A J, Linnolahti M, Pakkanen T A and Pyykkö P 2008 Chem. Commun. 465
[24] Wang J L, Jellinek J, Zhao J, Chen Z F, King R B and Schleyer P V 2005 J. Phys. Chem. A 109 9265
[25] Wang D L, Sun X P, Shen H T, Hou D Y and Zhai Y C 2008 Chem. Phys. Lett. 457 366
[26] Jalbout A F, Contreras-Torres F F, P閞ez L A and Garz髇 I L 2008 J. Phys. Chem. A 112 353
[27] Tielens F and Andr閟 J 2007 J. Phys. Chem. C 111 10342
[28] Zheng X, Shi X, Dai Z and Zeng Z 2006 Phys. Rev. B 74 085418
[29] Johansson M P, Vaara J and Sundholm D 2008 J. Phys. Chem. C 112 19311
[30] Wang Y and Gong X G 2006 J. Chem. Phys. 125 124703
[31] Jayasekharan T and Ghanty T K 2010 J. Phys. Chem. C 114 8787
[32] Sun Q, Gong X G, Zheng Q Q, Sun D Y and Wang G H 1996 Phys. Rev. B 54 10896
[33] Zhang M, Feng X J, Zhao L X, He L M and Luo Y H 2010 Chin. Phys. B 19 043103
[34] Gao Y, Bulusu S and Zeng X C 2005 J. Am. Chem. Soc. 127 15680
[35] Li X, Kiran B, Cui L F and Wang L S 2005 Phys. Rev. Lett. 95 253401
[36] Zhang M, He L M, Zhao L X, Feng X J and Luo Y H 2009 J. Phys. Chem. C 113 6491
[37] Chen D D, Kuang X Y, Zhao Y R, Shao P and Li Y F 2011 Chin. Phys. B 20 063601
[38] Sun L S, Zhang A C, Xiang J, Guo P H, Liu Z C and Su S 2011 Acta Phys. Sin. 60 073103 (in Chinese)
[39] Yu Y J, Yang C L, An Y P and Wang H Y 2011 Acta Phys. Sin. 60 023102 (in Chinese)
[40] Zhang M, He L M, Zhao L X, Feng X J, Cao W and Luo Y H 2009 J. Mol. Struct.:Theochem 911 65
[41] Zhang M, Chen S, Deng Q M, He L M, Zhao L N and Luo Y H 2010 Eur. Phys. J. D 58 117
[42] Wang S Y, Yu J Z, Mizuseki H, Sun Q, Wang C Y and Kawazoe Y 2004 Phys. Rev. B 70 165413
[43] Long J, Qiu Y X, Chen X Y and Wang S G 2008 J. Phys. Chem. C 112 12646
[44] Pyykkö P and Runeberg N 2002 Angew. Chem. Int. Ed. 41 2174
[45] Li X, Kiran B, Li J, Zhai H J and Wang L S 2002 Angew. Chem. Int. Ed. 41 4786
[46] Kumar V 2009 Phys. Rev. B 79 085423
[47] Wang Q, Sun Q and Jena P 2009 J. Chem. Phys. 131 204501
[48] Ordej髇 P, Artacho E and Soler J M 1996 Phys. Rev. B 53 R10441
[49] S醤chez-Portal D, Ordej髇 P, Artacho E and Soler J M 1997 Int. J. Quantum. Chem. 65 453
[50] Delley B 1990 J. Chem. Phys. 92 508
[51] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[52] Delley B 2002 Phys. Rev. B 66 155125
[53] Pulay P 1980 Chem. Phys. Lett. 73 393
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[13] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[14] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!