|
|
Peripheral collisions of highly charged ions with metal clusters |
Zhang Cheng-Jun(张成俊), Hu Bi-Tao(胡碧涛)†, and Luo Xian-Wen(罗先文) |
School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000, China |
|
|
Abstract Within the framework of the dynamical classical over-barrier model, the soft collisions between slow highly charged ions (SHCIs) Ar17+ and the large copper clusters under large impact parameters have been studied in this paper. We present the dominant mechanism of the electron transfer between SHCIs and a large metal cluster by computational simulation. The evolution of the occupation of projectile ions, KLx satellite lines, X-ray yields, Auger electron spectrum and scattering angles are provided.
|
Received: 02 September 2011
Revised: 27 April 2012
Accepted manuscript online:
|
PACS:
|
36.40.Wa
|
(Charged clusters)
|
|
32.30.Rj
|
(X-ray spectra)
|
|
34.70.+e
|
(Charge transfer)
|
|
61.46.-w
|
(Structure of nanoscale materials)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11135002, 91026021, 11075068, 11075069, and 10975065) and the Fundamental Research Funds for the Central Universities of China (Grant No. lzujbky-2010-k08). |
Cite this article:
Zhang Cheng-Jun(张成俊), Hu Bi-Tao(胡碧涛), and Luo Xian-Wen(罗先文) Peripheral collisions of highly charged ions with metal clusters 2012 Chin. Phys. B 21 053601
|
[1] |
Cederquist H, Fardi A, Haghighat K, Langereis A, Schmidt H T and Schwartz S H 1999 Phys. Scr. T80 46
|
[2] |
Niehaus A 1986 J. Phys. B:At. Mol. Phys. 19 2925
|
[3] |
Heer W A 1993 Rev. Mod. Phys. 65 611
|
[4] |
Walch B, Cocke C L, Voelpel R and Salzborn E 1994 Phys. Rev. Lett. 72 1439
|
[5] |
Bárány A and Setterlind C J 1995 Nucl. Instrum. Methods Phys. Res. B 98 184
|
[6] |
Briand J P, d'Etat-Ban B, Schneider D, Briere M A, Decaux V, McDonald J W and Bardin S 1996 Phys. Rev. A 53 2194
|
[7] |
LeBrun T, Berry H G, Cheng S, Dunford R W, Esbensen H, Gemmell D S, Kanter E P and Bauer W 1994 Phys. Rev. Lett. 72 3965
|
[8] |
Biquard X, Guet C, Huber B, Jalabert D, Maurel M, Opitz J and Rocco J C 1997 Phys. Scr. 1997 291
|
[9] |
Itoh A, Tsuchida H, Miyabe K, Imai M and Imanishi N 1997 Phys. Scr. 1997 289
|
[10] |
Langereis A, Jensen J, Fardi A, Haghighat K, Schmidt H T, Schwartz S H, Zettergren H and Cederquist H 2001 Phys. Rev. A 63 062725
|
[11] |
Schwartz S H, Fardi A, Haghighat K, Langereis A, Schmidt H T and Cederquist H 2000 Phys. Rev. A 63 013201
|
[12] |
Cederquist H, Fardi A, Haghighat K, Langereis A, Schmidt H T, Schwartz S H, Levin J C, Sellin I A, Lebius H, Huber B, Larsson M O and Hvelplund P 2000 Phys. Rev. A 61 022712
|
[13] |
Wang L, Zhang X A, Yang Z H, Chen X M, Zhang H Q, Cui Y, Shao J X and Xu X 2008 Acta Phys. Sin. 57 0137 (in Chinese)
|
[14] |
Daligault J, Chandezon F, Guet C, Huber B A and Tomita S 2002 Phys. Rev. A 66 033205
|
[15] |
Ryufuku H, Sasaki K and Watanabe T 1980 Phys. Rev. A 21 745
|
[16] |
Thumm U 1997 Phys. Rev. A 55 479
|
[17] |
Burgdörfer J and Lerner P and Meyer F W 1991 Phys. Rev. A 44 5674
|
[18] |
Guillemot L, Roncin P, Gaboriaud M N, Laurent H and Barat M 1990 J. Phys. B:At. Mol. Opt. Phys. 23 4293
|
[19] |
Ducrée J J, Casali F and Thumm U 1998 Phys. Rev. A 57 338
|
[20] |
Jin Jian, Khemliche H, Prior M H and Xie Z 1996 Phys. Rev. A 53 615
|
[21] |
Brenac A, Chandezon F, Lebius H, Pesnelle A, Tomita S and Huber B A 1999 Phys. Scr. 1999 195
|
[22] |
Thumm U 1994 J. Phys. B:At. Mol. Opt. Phys. 27 3515
|
[23] |
Thumm U, Bárány A, Cederquist H, Höagg L and Setterlind C J 1997 Phys. Rev. A 56 4799
|
[24] |
Selberg N, Bárány A, Biedermann C, Setterlind C J, Cederquist H, Langereis A, Larsson M O, Wöannström A and Hvelplund P 1996 Phys. Rev. A 53 874
|
[25] |
Plagne L and Guet C 1999 Phys. Rev. A 59 4461
|
[26] |
Groß M and Guet C 1996 Phys. Rev. A 54 R2547
|
[27] |
Pan X D, Gai Z G and Li G P 2008 Chin. Phys. B 17 3329
|
[28] |
Jackson J D 1975 Classical Electrodynamics (New York:Wiley)
|
[29] |
Halas S 2006 Materials Science Poland 24 4
|
[30] |
Zettergren H, Schmidt H T, Cederquist H, Jensen J, Tomita S, Hvelplund P, Lebius H and Huber B A 2002 Phys. Rev. A 66 032710
|
[31] |
Cowan R D 1981 The Theory of Atomic Structure and Spectra (Berkeley:University of California Press)
|
[32] |
Winecki S, Cocke C L, Fry D and Stöckli M P 1996 Phys. Rev. A 53 4228
|
[33] |
Bhalla C P 1973 Phys. Rev. A 8 2877
|
[34] |
Winter H and Aumayr F 1999 J. Phys. B:At. Mol. Opt. Phys. 32 R39
|
[35] |
d'Etat B, Briand J P, Ban G, de Billy L, Desclaux J P and Briand P 1993 Phys. Rev. A 48 1098
|
[36] |
Luo X W, Hu B T, Zhang C J, Wang J J and Chen C H 2010 Phys. Rev. A 81 052902
|
[37] |
Wang J J, Zhang J, Gu J G, Luo X W and Hu B T 2009 Phys. Rev. A 80 062902
|
[38] |
Zou X R, Shao J X, Chen X M and Cui Y 2010 Acta Phys. Sin. 59 6064 (in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|