CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Charge transport and shot noise on the surface of a topological insulator with a magnetic modulation |
Yuan Jian-Hui(袁建辉)†, Cheng Ze(成泽), Zhang Jian-Jun(张建军), Zeng Qi-Jun(曾奇军), and Zhang Jun-Pei(张俊佩) |
School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract In this paper, we investigate the transport features and the Fano factor of Dirac electrons on the surface of a three-dimensional topological insulator with a magnetic modulation. We consider a hard wall bounding condition on the edge of the topological insulator, which implies that a surface state of the topological insulator is insulating. We find that a valley of conductivity at the Dirac point is associated with a Fano factor peak, and more interestingly, this topological metal changes from insulating to metallic by controlling the effective exchange field.
|
Received: 08 October 2011
Revised: 14 November 2011
Accepted manuscript online:
|
PACS:
|
72.80.Sk
|
(Insulators)
|
|
73.40.-c
|
(Electronic transport in interface structures)
|
|
75.50.Gg
|
(Ferrimagnetics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10174024 and 10474025). |
Corresponding Authors:
Yuan Jian-Hui,jianhui831110@163.com
E-mail: jianhui831110@163.com
|
Cite this article:
Yuan Jian-Hui(袁建辉), Cheng Ze(成泽), Zhang Jian-Jun(张建军), Zeng Qi-Jun(曾奇军), and Zhang Jun-Pei(张俊佩) Charge transport and shot noise on the surface of a topological insulator with a magnetic modulation 2012 Chin. Phys. B 21 047203
|
[1] |
Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
|
[2] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[3] |
Hsieh D, Qian D, Wray L, Xia Y, Hor Y, Cava R J and Hasan M Z 2008 Nature 452 970
|
[4] |
Burkov A A and Hawthorn D G 2010 Phys. Rev. Lett. 105 066802
|
[5] |
Moore J E 2010 Nature 464 194
|
[6] |
Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802
|
[7] |
Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106802
|
[8] |
Wu C, Bernevig B A and Zhang S C 2006 Phys. Rev. Lett. 96 106401
|
[9] |
Xu C and Moore J E 2006 Phys. Rev. B 73 045322
|
[10] |
Fu L and Kane C L 2007 Phys. Rev. B 76 045302
|
[11] |
Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
|
[12] |
Bernevig B A, Hughes T L and Zhang S C 2006 Science 314 1757
|
[13] |
König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L, Qi X L and Zhang S C 2007 Science 318 766
|
[14] |
Moore J E and Balents L 2007 Phys. Rev. B 75 121306(R)
|
[15] |
Fu L, Kane C L and Mele E J 2007 Phys. Rev. Lett. 98 106803
|
[16] |
Teo J C, Fu L and Kane C L 2008 Phys. Rev. B 78 045426
|
[17] |
Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansi A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nat. Phys. 5 398
|
[18] |
Wu Z H, Peeters F M and Chang K 2010 Phys. Rev. B 82 115211
|
[19] |
Eguchi T, Gilkey P and Hansen A 1980 Phys. Rep. 66 213
|
[20] |
Rashba E I 1960 Sov. Phys. Solid State 2 1109
|
[21] |
Hsieh D, Xia Y, Wray L, Qian D, Pal A, Dil J H, Osterwalder J, Meier F, Bihlmayer G, Kane C L, Hor Y S, Cava R J and Hasan M Z 2009 Science 323 919
|
[22] |
Nishide A, Taskin A, Takeichi Y, Okuda T, Kakizaki A, Hirahara T, Nakatsuji K, Komori F, Ando Y and Matsuda I 2010 Phys. Rev. B 81 041309
|
[23] |
Liu Q, Liu C X, Xu C, Qi X L and Zhang S C 2009 Phys. Rev. Lett. 102 156603
|
[24] |
Qi X L, Li R D, Zang J D and Zhang S C 2009 Science 323 1184
|
[25] |
Qi X L, Hughes T L and Zhang S C 2008 Phys. Rev. B 78 195424
|
[26] |
Yokoyama T, Tanaka Y and Nagaosa N 2010 Phys. Rev. B 81 121401(R)
|
[27] |
Matulis A, Peeters F M and Vasilopoulos P 1994 Phys. Rev. Lett. 72 1518
|
[28] |
Lee S J, Souma S, Ihm G and Chang K J 2004 Phys. Rep. 394 175 035341
|
[29] |
Chang K and Lou W K 2011 Phys. Rev. Lett. 106 206802
|
[30] |
He Z L, Lü T Q, Cui L, Xue H J, Li L J and Yin H T 2011 Chin. Phys. B 20 117303
|
[31] |
Berry M V and Mondragon R J 1987 Proc. R. Soc. Lond. A 412 53
|
[32] |
Snyman I and Beenakker C W J 2007 Phys. Rev. B 75 045322
|
[33] |
Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
|
[34] |
Zhang L B, Cheng F, Zhai F and Chang K 2011 Phys. Rev. B 83 081402(R)
|
[35] |
Chakhalian J, Freeland J W, Srajer G, Strempfer J, Khaliullin G, Cezar J C, Charlton T, Dalgliesh R, Bernhard C, Cristiani G, Habermeier H U and Keimer B 2006 Nat. Phys. 2 244
|
[36] |
Wees B J V, Kouwenhoven L P, Harmans C J, Williamson J G, Timmering C E, Broekaart M E, Foxon C T and Harris J J 1989 Phys. Rev. Lett. 62 2523
|
[37] |
Datta S 1997 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp. 247-252
|
[38] |
Sonin E B 2008 Phys. Rev. B 77 233408
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|