Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 045203    DOI: 10.1088/1674-1056/21/4/045203
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Self-consistent diverted tokamak equilibria with nonzero edge current

Shi Bing-Ren(石秉仁)
Southwestern Institute of Physics, Chengdu 610041, China
Abstract  The semi-analytical method, previously used to construct model double-null and single-null diverted tokamak equilibria (Bingren Shi, Plasma Phys. Control Fusion/ 50 (2008) 085006, 51 (2009) 105008, Nucl. Fusion/ 51 (2011) 023004), is extended to describe diverted tokamak equilibria with nonzero edge current, including the Pfirsch-Schlüter(PS) current. The PS current density is expressed in a way suitable to describe a diverted tokamak configuration in the near separatrix region. The model equilibrium is expressed by only two terms of the exact separable solutions of the Grad-Shafranov equation, one of which is governed by a homogeneous ordinary differential equation, and the other by an inhomogeneous one. The particular merits of such a model configuration are that the internal region inside the separatrix and a suitable scrape-off layer can be simultaneously described by this exact solution. To investigate the physics in the region near the X-point, the magnetic surfaces can be satisfactorily described by approximate hyperbolic curves.
Keywords:  diverter configuration      nonzero edge current      PS current  
Received:  01 August 2011      Revised:  02 September 2011      Accepted manuscript online: 
PACS:  52.55.Fa (Tokamaks, spherical tokamaks)  
  52.55.Rk (Power exhaust; divertors)  
Fund: Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant No. 2009GB101002).
Corresponding Authors:  Shi Bing-Ren,Shibr@swip.ac.cn     E-mail:  Shibr@swip.ac.cn

Cite this article: 

Shi Bing-Ren(石秉仁) Self-consistent diverted tokamak equilibria with nonzero edge current 2012 Chin. Phys. B 21 045203

[1] Burrel K H et al. 1992 Plasma Physics Control Fusion 34 1859
[2] Suttrop W 2000 Plasma Physics Control Fusion 42 A1
[3] Bingren Shi 2008 Plasma Physics Control Fusion 50 085006
[4] Bingren Shi 2009 Plasma Physics Control Fusion 51 105008
[5] Bingren Shi 2011 Nucl. Fusion 51 023004
[6] MaCarthy P J 1999 Phys. Plasmas 9 3555
[7] Atanasiu C V, Gunter, Lackner K and Miron I G 2004 Phys. Plasmas 11 3510
[8] Solovév L S 1967 Zh. Eksp. Teor. Fiz 53 626 [Sov. Phys. JETP 26 (1968) 400]
[9] Zheng S B, Wootton A J and Solano E R 1996 Phys. Plasmas 3 1176
[10] Weening R H 2000 Phys. Plasmas 7 3654
[11] Bingren Shi 2006 Phys. Plasmas 12 122504
[12] Bingren Shi 2004 Plasma Physics Control Fusion 46 1105
[13] Srinivasan R, Avanash K and Kaw P K 2001 Phys. Plasmas 8 4483
[14] Cerfon A J and Freidberg J P 2010 Phys. Plasmas 17 032502
[15] Srinivasan R, Lao L L and Chu M S 2010 Plasma Phys. Control Fusion 52 035007
[16] Guazzotto L and Friedberg J P 2007 Phys. Plasma 14 112508
[17] Pfirsch D and SchlüterA 1962 Max-Planck-Institute Report MPI/PA/7/62
[18] Hazeltine R D and Hinton F L 1973 Phys. Fluids 16 1883
[19] Catto P J and Simakov A N 2005 Phys. Plasmas 12 012501
[20] Hahm T S and Diamond P H 1987 Phys. Fluid 30 133
[21] Lortz D1975 Nucl. Fusion 15 49
[22] Wilson H R, Connor J W, Field A R and Fielding S J 1999 Phys. Plasmas 6 1925
[23] Connor J W, Hastie R J, Wilson H R and Miller R L 1998 Phys. Plasmas 5 2687
[1] Upgrade of the magnetic diagnostic system for restart of HT-6M operation
Li-Xing Chen(陈力行), Biao Shen(沈飊), Da-Long Chen(陈大龙), Zheng-Ping Luo(罗正平),Zu-Chao Zhang(张祖超), Ying Chen(陈颖), Yong Wang(王勇), and Jin-Ping Qian(钱金平). Chin. Phys. B, 2022, 31(12): 125203.
[2] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[3] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[4] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[5] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[6] The intermittent excitation of geodesic acoustic mode by resonant Instanton of electron drift wave envelope in L-mode discharge near tokamak edge
Zhao-Yang Liu(刘朝阳), Yang-Zhong Zhang(章扬忠), Swadesh Mitter Mahajan, A-Di Liu(刘阿娣), Chu Zhou(周楚), and Tao Xie(谢涛). Chin. Phys. B, 2022, 31(4): 045202.
[7] Neoclassical tearing mode stabilization by electron cyclotron current drive for HL-2M tokamak
Jing-Chun Li(李景春), Jia-Qi Dong(董家齐), Xiao-Quan Ji(季小全), and You-Jun Hu(胡友俊). Chin. Phys. B, 2021, 30(7): 075203.
[8] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[9] Nonlinear simulation of multiple toroidal Alfvén eigenmodes in tokamak plasmas
Xiao-Long Zhu(朱霄龙), Feng Wang(王丰), Zheng-Xiong Wang(王正汹). Chin. Phys. B, 2020, 29(2): 025201.
[10] Discharge simulation and volt-second consumption analysis during ramp-up on the CFETR tokamak
Cheng-Yue Liu(刘成岳), Bin Wu(吴斌), Jin-Ping Qian(钱金平), Guo-Qiang Li(李国强), Ya-Wei Hou(侯雅巍), Wei Wei(韦维), Mei-Xia Chen(陈美霞), Ming-Zhun Lei(雷明准), Yong Guo(郭勇). Chin. Phys. B, 2020, 29(2): 025202.
[11] Estimation of plasma equilibrium parameters via a neural network approach
Zi-Jian Zhu(朱子健), Yong Guo(郭勇), Fei Yang(杨飞), Bing-Jia Xiao(肖炳甲), Jian-Gang Li(李建刚). Chin. Phys. B, 2019, 28(12): 125204.
[12] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[13] Effect of edge transport barrier on required toroidal field for ignition of elongated tokamak
Cui-Kun Yang(杨翠坤), Ming-Sheng Chu(朱名盛), Wen-Feng Guo(郭文峰). Chin. Phys. B, 2019, 28(4): 045202.
[14] Investigation on the drives of the poloidal flow in the ohmic and biased electrode experiments
Yi Yu(余羿), Tao Lan(兰涛), Min Xu(许敏), Yizhi Wen(闻一之). Chin. Phys. B, 2019, 28(3): 035202.
[15] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
No Suggested Reading articles found!