Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030508    DOI: 10.1088/1674-1056/21/3/030508
GENERAL Prev   Next  

Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic–quintic Gross–Pitaevskii equation

Dai Chao-Qing(戴朝卿), Chen Rui-Pin(陈瑞品), and Wang Yue-Yue(王悦悦)
School of Sciences, Zhejiang Agricultural and Forestry University, Linán 311300, China
Abstract  With the help of similarity transformation, we obtain analytical spatiotemporal self-similar solutions of the nonautonomous (3+1)-dimensional cubic-quintic Gross-Pitaevskii equation with time-dependent diffraction, nonlinearity, harmonic potential and gain or loss when two constraints are satisfied. These constraints between the system parameters hint that self-similar solutions form and transmit stably without the distortion of shape based on the exact balance between the diffraction, nonlinearity and the gain/loss. Based on these analytical results, we investigate the dynamic behaviours in a periodic distributed amplification system.
Keywords:  Gross-Pitaevskii equation      similarity transformation      self-similar solutions  
Received:  24 May 2011      Revised:  02 September 2011      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  42.81.Dp (Propagation, scattering, and losses; solitons)  
Fund: Project supported by the National Natural Science Foundations of China (Grant No. 11005092), the Program for Innovative Research Team of Young Teachers (Grant No. 2009RC01), and the Scientific Research and Developed Fund of Zhejiang Agricultural and Forestry University, China (Grant No. 2009FK42).
Corresponding Authors:  Dai Chao-Qing,dcq424@126.com     E-mail:  dcq424@126.com

Cite this article: 

Dai Chao-Qing(戴朝卿), Chen Rui-Pin(陈瑞品), and Wang Yue-Yue(王悦悦) Spatiotemporal self-similar solutions for the nonautonomous (3+1)-dimensional cubic–quintic Gross–Pitaevskii equation 2012 Chin. Phys. B 21 030508

[1] Dai C Q and Zhang J F 2005 Int. Mod. Phys. B 19 2129
[2] Liu S K, Zhao Q and Liu S D 2011 Chin. Phys. B 20 040202
[3] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 040301
[4] Yang Z, Ma S H and Fang J P 2011 Chin. Phys. B 20 060506
[5] Dai C Q and Zhang J F 2006 Opt. Commun. 263 309
[6] Li B Q, Ma Y L, Wang C, Xu M P and Li Y 2011 Acta Phys. Sin. 60 060203 (in Chinese)
[7] Wang H and Li B 2011 Chin. Phys. B 20 040203
[8] Qian C, Wang L L and Zhang J F 2011 Acta Phys. Sin. 60 064214 (in Chinese)
[9] Dai C Q, Wang Y Y and Yan C J 2010 Opt. Commun. 283 1489
[10] Zong F D, Yang Y and Zhang J F 2011 Acta Phys. Sin. 60 3670 (in Chinese)
[11] Sulem C and Sulem P 2000 The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse (Berlin: Springer-Verlag)
[12] Adhikari S K 2004 Phys. Rev. A 69 063613
[13] Saito H and Ueda M 2003 Phys. Rev. Lett. 90 040403
[14] Dai C Q, Wang Y Y and Zhang J F 2010 Opt. Lett. 35 1437
[15] Dai C Q, Chen R P and Zhou G Q 2011 J. Phys. B: At. Mol. Opt. Phys. 44 145401
[16] Dai C Q, Wang D S, Wang L L, Zhang J F and Liu W M 2011 Ann. Phys. 326 2356
[17] Zhang W X, She Y C and Wang D L 2011 Acta Phys. Sin. 60 070514 (in Chinese)
[18] Abdullaev F K, Gammal A, Tomio L and Frederico T 2001 Phys. Rev. A 63 043604
[19] Jiang L H and Wu H Y 2011 Opt. Commun. 284 2022
[20] Yang R C, Hao R Y, Li L, Shi X J, Li Z H and Zhou G S 2005 Opt. Commun. 253 177
[1] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[2] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[3] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[4] Soliton excitations and interaction in alpha helical protein with interspine coupling in modified nonlinear Schrödinger equation
Ming-Ming Li(李明明), Cheng-Lai Hu(胡成来), Jun Wu(吴俊), Xian-Jing Lai(来娴静), Yue-Yue Wang(王悦悦). Chin. Phys. B, 2019, 28(12): 120502.
[5] Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential
Ying Wang(王颖), Shuyu Zhou(周蜀渝). Chin. Phys. B, 2018, 27(10): 100312.
[6] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
[7] Three-dimensional solitons in two-component Bose-Einstein condensates
Liu Yong-Kai (刘永恺), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2014, 23(11): 110308.
[8] Casson fluid flow and heat transfer over a nonlinearly stretching surface
Swati Mukhopadhyay. Chin. Phys. B, 2013, 22(7): 074701.
[9] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[10] Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory
Zhao Li (赵力), Yang Jie (杨捷), Xie Qun-Ying (谢群英), Tian Miao (田苗). Chin. Phys. B, 2012, 21(9): 090304.
[11] Solitons for the cubic–quintic nonlinear Schrödinger equation with varying coefficients
Chen Yuan-Ming(陈元明), Ma Song-Hua(马松华), and Ma Zheng-Yi(马正义) . Chin. Phys. B, 2012, 21(5): 050510.
[12] Analytical solutions and rogue waves in (3+1)-dimensional nonlinear Schrödinger equation
Ma Zheng-Yi(马正义) and Ma Song-Hua(马松华) . Chin. Phys. B, 2012, 21(3): 030507.
[13] Dynamic stability and manipulation of bright matter-wave solitons by optical lattices in Bose–Einstein condensates
Song Chang-Sheng(宋昌盛), Li Jing(黎菁), and Zong Feng-De(宗丰德) . Chin. Phys. B, 2012, 21(2): 020306.
[14] Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap
Shi Yu-Ren (石玉仁), Liu Cong-Bo (刘丛波), Wang Guang-Hui (王光辉), Zhou Zhi-Gang (周志刚). Chin. Phys. B, 2012, 21(12): 120307.
No Suggested Reading articles found!