Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 110308    DOI: 10.1088/1674-1056/23/11/110308
GENERAL Prev   Next  

Three-dimensional solitons in two-component Bose-Einstein condensates

Liu Yong-Kai (刘永恺)a, Yang Shi-Jie (杨师杰)a b
a Department of Physics, Beijing Normal University, Beijing 100875, China;
b State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We investigate a kind of solitons in the two-component Bose-Einstein condensates with axisymmetric configurations in the R2× S1 space. The corresponding topological structure is referred to as Hopfion. The spin texture differs from the conventional three-dimensional (3D) skyrmion and knot, which is characterized by two homotopy invariants. The stability of the Hopfion is verified numerically by evolving the Gross-Pitaevskii equations in imaginary time.

Keywords:  two-component Bose-Einstein condensates      three-dimensional (3D) soliton      coupled Gross-Pitaevskii equations      Hopfion  
Received:  25 April 2014      Revised:  27 June 2014      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Fg (Multicomponent condensates; spinor condensates)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11374036) and the National Basic Research Program of China (Grant No. 2012CB821403).

Corresponding Authors:  Yang Shi-Jie     E-mail:  yangshijie@tsinghua.org.cn

Cite this article: 

Liu Yong-Kai (刘永恺), Yang Shi-Jie (杨师杰) Three-dimensional solitons in two-component Bose-Einstein condensates 2014 Chin. Phys. B 23 110308

[1] Babaev E, Faddeev L D and Niemi A J 2002 Phys. Rev. B 65 100512
[2] Kawaguchi Y, Nitta M and Ueda M 2008 Phys. Rev. Lett. 100 180403
[3] Zhou X, Li Y, Cai Z and Wu C 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134001
[4] Li Y, Zhou X and Wu C 2012 arXiv: 1205.2162
[5] Irvine W T M and Bouwmeester D 2008 Nat. Phys. 4 716
[6] Dennis M R, King R P, Jack B, O'Holleran K and Padgett M J 2010 Nat. Phys. 6 118
[7] Desyatnikov A S, Buccoliero D, Dennis M R and Kivshar Y S 2012 Sci. Rep. 2 771
[8] Faddeev L and Niemi A J 1997 Nature 387 58
[9] Battye R A and Sutcliffe P M 1998 Phys. Rev. Lett. 81 4798
[10] Kawaguchi Y and Ueda M 2012 Phys. Rep. 520 253
[11] Kawaguchi Y, Kobayashi M, Nitta M and Ueda M 2010 Prog. Theor. Phys. Suppl. 186 455
[12] Zhang C, Guo W A, Feng S P and Yang S J 2013 Chin. Phys. B 22 110308
[13] Gladikowski J and Hellmund M 1997 Phys. Rev. D 56 5194
[14] Jäykkä J and Hietarinta J 2009 Phys. Rev. D 79 125027
[15] Kobayashi M and Nitta M 2014 Phys. Lett. B 728 314
[16] Kobayashi M and Nitta M 2013 Nucl. Phys. B 876 605
[17] Liu X X, Zhang X F and Zhang P 2010 Chin. Phys. Lett. 27 070306
[18] Ian M S, Wu C J and Zhou X F 2011 Chin. Phys. Lett. 28 097102
[19] Cui G D, Sun J F, Jiang B N, Qian J and Wang Y Z 2013 Chin. Phys. B 22 100501
[20] Kasamatsu K, Takeuchi H, Tsubota M and Nitta M 2013 Phys. Rev. A 88 013620
[21] Choi J Y, Kwon W J and Shin Y I 2012 Phys. Rev. Lett. 108 035301
[22] Wüster S, Argue T E and Savage C M 2005 Phys. Rev. A 72 043616
[23] Mäkelä H 2006 J. Phys. A: Math. Gen. 39 7423
[24] Battye B A, Cooper N R and Sutcliffe P M 2002 Phys. Rev. Lett. 88 080401
[25] Ryder L H 1980 J. Phys. A: Math. Gen. 13 437
[26] Auckly D and Speight M 2006 Commun. Math. Phys. 263 173
[27] Bao W, Jaksch D and Markowich P A 2003 J. Comput. Phys. 187 318
[28] Bao W and Wang H 2006 J. Comput. Phys. 217 612
[29] Yang S J, Wu Q S, Zhang S N and Feng S 2008 Phys. Rev. A 77 033621
[30] Bao W and Cai Y 2013 Kinet. Relat. Mod. 6 1
[31] Liu Y K and Yang S J 2013 Phys. Rev. A 87 063632
[1] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
No Suggested Reading articles found!