Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120307    DOI: 10.1088/1674-1056/21/12/120307
GENERAL Prev   Next  

Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap

Shi Yu-Ren (石玉仁), Liu Cong-Bo (刘丛波), Wang Guang-Hui (王光辉), Zhou Zhi-Gang (周志刚)
College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
Abstract  The Homotopy Analysis Method (HAM) is adopted to find the approximate analytical solutions of the Gross-Pitaevskii equation, a nonlinear Schrödinger equation is used in simulation of Bose-Einstein condensates trapped in a harmonic potential. Comparisons between the analytical solutions and the numerical solutions have been made. The results indicate that they are agreement very well with each other when the atomic interaction is weakly.
Keywords:  Gross-Pitaevskii equation      homotopy analysis method      analytical solution  
Received:  30 April 2012      Revised:  29 May 2012      Accepted manuscript online: 
PACS:  03.75.Fi  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11047010) and the Key Project Foundation of the Education Ministry of China (Grant No. 209128).
Corresponding Authors:  Shi Yu-Ren     E-mail:

Cite this article: 

Shi Yu-Ren (石玉仁), Liu Cong-Bo (刘丛波), Wang Guang-Hui (王光辉), Zhou Zhi-Gang (周志刚) Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap 2012 Chin. Phys. B 21 120307

[1] Anderson M H, Ensher J R, Matthews M R,Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O, Andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[4] Bradley C C, Sackett C A and Hulet R G 1997 Phys. Rev. Lett. 78 985
[5] Cornish S L, Claussen N R, Roberts J L, Cornell E A and Wieman C E 2000 Phys. Rev. Lett. 85 1795
[6] Weber T, Herbig J, Mark M, Nägerl H C and Grimm R 2003 Science 299 232
[7] Fried D G, Killian T C, Willmann L, Landhuis D, Moss S C, Kleppner D and Greytak T J 1998 Phys. Rev. Lett. 81 3811
[8] Robert A, Sirjean O, Browaeys A, Poupard J, Nowak S, Boiron D, Westbrook C I and Aspect A 2001 Science 292 461
[9] Pereira Dos Santos F, Léonard J, Wang J M, Barrelet C J, Perales F, Rasel E, Unnikrishnan C S, Leduc M and Cohen-Tannoudji C 2001 Phys. Rev. Lett. 86 3459
[10] Jochim S, Bartenstein M, Altmeyer A, Hendl G, Riedl S, Chin C, Hecker Denschlag J and Grimm R 2003 Science 302 2101
[11] Gross E P 1961 Nuovo Cimento 20 454
[12] Pitaevskii L P 1961 Sov. Phys. JETP 13 451
[13] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[14] Lehtovaara L, Toivanen J and Eloranta J 2007 J. Comput. Phys. 221 148
[15] Auer J, Krotscheck E and Chin S A 2001 J. Chem. Phys. 115 6841
[16] Aichinger M and Krotscheck E 2005 Comput. Mater. Sci. 34 188
[17] Roy A K, Gupta N and Deb D M 2001 Phys. Rev. A 65 012109
[18] Lehtovaara L, Kiljunen T and Eloranta J 2004 J. Comput. Phys. 194 78
[19] Dion C M and Cancés E 2003 Phys. Rev. E 67 046706
[20] Dion C M and Cancés E 2007 Comput. Phys. Commun. 177 787
[21] Wang Y S and Chien C S 2011 J. Comput. Appl. Math. 235 2740
[22] Bao W Z and Wang H Q 2006 J. Comput. Phys. 217 612
[23] Bao W Z, Cai Y Y and Wang H Q 2010 J. Comput. Phys. 229 7874
[24] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[25] Wang D S, Hu X H and Liu W M 2010 Phys. Rev. A 82 023612
[26] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[27] Yan Z Y, Zhang X F and Liu W M 2011 Phys. Rev. A 84 023627
[28] Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[29] Zhang X F, Hu X H, Liu X X and Liu W M 2009 Phys. Rev. A 79 033630
[30] Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC)
[31] Liao S J 2012 Homotopy Analysis Method in Nonlinear Differential Equations (Beijing: Springer & Higher Education Press)
[32] Zhao Y L, Lin Z L, Liu Z and Liao S J 2012 Appl. Math. Comput. 218 8363
[33] Liao S J 2010 Commun. Nonlinear Sci. Numer. Simul. 15 2003
[34] Liao S J 2005 Appl. Math. Comput. 169 1186
[35] Shi Y R, Xu X J, Wu Z X, Wang Y H, Yang H J, Duan W S and Lü K P 2006 Acta Phys. Sin. 55 1555 (in Chinese)
[36] Shi Y R and Yang H J 2010 Acta Phys. Sin. 59 67 (in Chinese)
[1] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[2] Bose-Einstein condensates under a non-Hermitian spin-orbit coupling
Hao-Wei Li(李浩伟) and Jia-Zheng Sun(孙佳政). Chin. Phys. B, 2021, 30(6): 066702.
[3] A local refinement purely meshless scheme for time fractional nonlinear Schrödinger equation in irregular geometry region
Tao Jiang(蒋涛), Rong-Rong Jiang(蒋戎戎), Jin-Jing Huang(黄金晶), Jiu Ding(丁玖), and Jin-Lian Ren(任金莲). Chin. Phys. B, 2021, 30(2): 020202.
[4] SU(3) spin-orbit-coupled Bose-Einstein condensate confined in a harmonic plus quartic trap
Hao Li(李昊), Fanglin Chen(陈方林). Chin. Phys. B, 2019, 28(7): 070302.
[5] Current-phase relations of a ring-trapped Bose-Einstein condensate with a weak link
Xiu-Rong Zhang(张秀荣), Wei-Dong Li(李卫东). Chin. Phys. B, 2019, 28(1): 010303.
[6] Sonic horizon dynamics of ultracold Fermi system under elongated harmonic potential
Ying Wang(王颖), Shuyu Zhou(周蜀渝). Chin. Phys. B, 2018, 27(10): 100312.
[7] Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(4): 044302.
[8] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[9] Nonlinear tunneling through a strong rectangular barrier
Zhang Xiu-Rong (张秀荣), Li Wei-Dong (李卫东). Chin. Phys. B, 2015, 24(7): 070311.
[10] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[11] Closed-form solution of mid-potential between two parallel charged plates with more extensive application
Shang Xiang-Yu (商翔宇), Yang Chen (杨晨), Zhou Guo-Qing (周国庆). Chin. Phys. B, 2015, 24(10): 108203.
[12] Three-dimensional solitons in two-component Bose-Einstein condensates
Liu Yong-Kai (刘永恺), Yang Shi-Jie (杨师杰). Chin. Phys. B, 2014, 23(11): 110308.
[13] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[14] Analytical approximate solution for nonlinear space-time fractional Klein–Gordon equation
Khaled A. Gepreel, Mohamed S. Mohamed. Chin. Phys. B, 2013, 22(1): 010201.
[15] Topological aspect of vortex lines in two-dimensional Gross–Pitaevskii theory
Zhao Li (赵力), Yang Jie (杨捷), Xie Qun-Ying (谢群英), Tian Miao (田苗). Chin. Phys. B, 2012, 21(9): 090304.
No Suggested Reading articles found!