Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 127901    DOI: 10.1088/1674-1056/21/12/127901
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Charging dynamics of polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results

Cao Meng (曹猛), Wang Fang (王芳), Liu Jing (刘婧), Zhang Hai-Bo (张海波)
Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Department of Electronic Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  We present a novel numerical model and simulate preliminarily the charging process of polymer subjected to electron irradiation of several 10 keV. The model includes the simultaneous processes of electron scattering and ambipolar transport and the influence of a self-consistent electric field on the scattering distribution of electrons. The dynamic spatial distribution of charges is obtained and validated by existing experimental data. Our simulations show that excess negative charges are concentrated near the edge of the electron range. However, the formed region of high charge density may extend to the surface and bottom of a kapton sample, due to the effects of electric field on electron scattering and charge transport, respectively. Charge trapping is then demonstrated to significantly influence the charge motion. The charge distribution can be extended to the bottom as the trap density decreases. Charge accumulation is therefore balanced by the appearance and increase of leakage current. Accordingly, our model and numerical simulation provide a comprehensive insight into the charging dynamics of polymer irradiated by electrons in the complex space environment.
Keywords:  electron irradiation      charging dynamics      electron scattering      charge transport      polymer  
Received:  27 April 2012      Revised:  17 May 2012      Accepted manuscript online: 
PACS:  79.20.Ap (Theory of impact phenomena; numerical simulation)  
  72.20.Jv (Charge carriers: generation, recombination, lifetime, and trapping)  
  02.70.Uu (Applications of Monte Carlo methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175140) and the Fundamental Research Funds for the Central Universities.
Corresponding Authors:  Zhang Hai-Bo     E-mail:  hbzhang@mail.xjtu.edu.cn

Cite this article: 

Cao Meng (曹猛), Wang Fang (王芳), Liu Jing (刘婧), Zhang Hai-Bo (张海波) Charging dynamics of polymer due to electron irradiation: A simultaneous scattering-transport model and preliminary results 2012 Chin. Phys. B 21 127901

[1] DeForest S E 1972 J. Geophys. Res. 77 651
[2] Lai S T and Tautz M 2008 J. Geophys. Res. 113 A11211
[3] Garrett H B, Evans R W, Whittlesey A C, Katz I and Jun I 2008 IEEE Trans. Plasma Sci. 36 2440
[4] Rau E I, Evstafeva E N and Andrianov M V 2008 Phys. Solid State 50 621
[5] Lai S T 2010 J. Spacecraft Rockets 47 634
[6] Huang J G and Han J W 2010 Acta Phys. Sin. 59 2907 (in Chinese)
[7] Kim W, Jun I and Kokorowski M 2010 IEEE Trans. Nucl. Sci. 57 3143
[8] Koons H C, Mazur J E, Selesnick R S, Blake J B, Fennell J F, Roeder J L and Anderson P C 2000 Proc. 6th Spacecraft Charging Technology Conference, September 1-3, 2000, Bedford, MA, USA, p. 7
[9] Takada T, Miyake H and Tanaka Y 2006 IEEE Trans. Plasma Sci. 34 2176
[10] Perrin C, Griseri V, Inguimbert C and Laurent C 2008 J. Phys. D: Appl. Phys. 41 205417
[11] Zhao S L and Poumellec B 2011 Chin. Phys. B 20 037901
[12] Sessler G M 1992 IEEE Trans. Electr. Insul. 27 961
[13] Kotera M, Yamaguchi K and Suga H 1999 Jpn. J. Appl. Phys. 38 7176
[14] Yasuda M, Kainuma Y, Kawata H, Hirai Y, Tanaka Y, Watanabe R and Kotera M 2008 J. Appl. Phys. 104 124904
[15] Ferreira G F L and de Figueiredo M T 2003 IEEE Trans. Dielectr. Electr. Insul. 10 137
[16] Touzin M, Goeuriot D, Guerret-Piecourt C, Juve D, Treheux D and Fitting H J 2006 J. Appl. Phys. 99 114110
[17] Le Roy S, Baudoin F, Griseri V, Laurent C and Teyssedre G 2010 J. Phys. D: Appl. Phys. 43 315402
[18] Quan R H, Zhang Z L, Han J W, Huang J G and Yan X J 2009 Acta Phys. Sin. 58 1205 (in Chinese)
[19] Matsuoka S, Sunaga H, Tanaka R, Hagiwara M and Araki K 1976 IEEE Trans. Nucl. Sci. 23 1447
[20] Berkley D A 1979 J. Appl. Phys. 50 3447
[21] Qin X G, He D Y and Wang J 2009 Acta Phys. Sin. 58 684 (in Chinese)
[22] Zhang H B, Feng R J and Ura K 2003 Chin. Phys. Lett. 20 2011
[23] Cazaux J 2005 J. Phys. D: Appl. Phys. 38 2433
[24] Zhang H B, Li W Q and Cao M 2012 Chin. Phys. Lett. 29 047901
[25] Liu Z L, Hu Z Y, Zhang Z X, Shao H, Chen M, Bi D W, Ning B X and Zou S C 2011 Chin. Phys. B 20 070701
[26] Li W Q and Zhang H B 2010 Appl. Surf. Sci. 256 3482
[27] Le Roy S, Teyssedre G and Laurent C 2006 IEEE Trans. Dielectr. Electr. Insul. 13 239
[28] http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
[1] Integral cross sections for electron impact excitations of argon and carbon dioxide
Shu-Xing Wang(汪书兴) and Lin-Fan Zhu(朱林繁). Chin. Phys. B, 2022, 31(8): 083401.
[2] Elastic electron scattering with CH2Br2 and CCl2Br2: The role of the polarization effects
Xiaoli Zhao(赵小利) and Kedong Wang(王克栋). Chin. Phys. B, 2022, 31(8): 083402.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[5] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[6] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[7] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[8] Thermoelectric transport in conductive poly(3,4-ethylenedioxythiophene)
Meng Li(李萌), Zuzhi Bai(柏祖志), Xiao Chen(陈晓), Cong-Cong Liu(刘聪聪), Jing-Kun Xu(徐景坤), Xiao-Qi Lan(蓝小琪), and Feng-Xing Jiang(蒋丰兴). Chin. Phys. B, 2022, 31(2): 027201.
[9] Recent advances of interface engineering in inverted perovskite solar cells
Shiqi Yu(余诗琪), Zhuang Xiong(熊壮), Zhenhan Wang(王振涵), Haitao Zhou(周海涛), Fei Ma(马飞), Zihan Qu(瞿子涵), Yang Zhao(赵洋), Xinbo Chu(楚新波), and Jingbi You(游经碧). Chin. Phys. B, 2022, 31(10): 107307.
[10] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[11] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[12] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[13] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[14] Elastic electron scattering with formamide-(H2O)n complexes (n=1, 2): Influence of microsolvation on the π* and σ* resonances
Kedong Wang(王克栋), Yan Wang(王言), Jie Liu(刘洁), Yiwen Wang(王怡文), and Haoxing Zhang(张浩兴). Chin. Phys. B, 2021, 30(12): 123401.
[15] Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study
Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波). Chin. Phys. B, 2021, 30(10): 108202.
No Suggested Reading articles found!