Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120505    DOI: 10.1088/1674-1056/21/12/120505
GENERAL Prev   Next  

Adaptive fuzzy nonlinear inversion-based control for uncertain chaotic systems

Liu Heng (刘恒)a, Yu Hai-Jun (余海军)b, Xiang Wei (向伟)a
a School of Mathematics and Computer Science, Huainan Normal University, Huainan 232038, China;
b School of Physics and Electronic Information, Huainan Normal University, Huainan 232038, China
Abstract  This paper presents a robust output feedback control method for uncertain chaotic systems which comprises a nonlinear inversion-based controller with a fuzzy robust compensator. The proposed controller eliminates the unknown nonlinear function by using a fuzzy system, whose inputs are not the state variables but feedback error signals. The underlying stability analysis as well as parameter update law design are carried out by Lyapunov-based technique. The proposed method indicates that the nonlinear inversion-based control approach can also be used to uncertain chaotic systems. Theoretical results are illustrated through two simulation examples.
Keywords:  chaotic systems      nonlinear inversion-based control      adaptive fuzzy control      variable structure control  
Received:  25 April 2012      Revised:  15 June 2012      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Young Talents Natural Science Foundation for Universities of Anhui Province, China (Grant No. 2012SQRL179).
Corresponding Authors:  Liu Heng     E-mail:  liuheng122@gmail.com

Cite this article: 

Liu Heng (刘恒), Yu Hai-Jun (余海军), Xiang Wei (向伟) Adaptive fuzzy nonlinear inversion-based control for uncertain chaotic systems 2012 Chin. Phys. B 21 120505

[1] Chen G and Dong X 1998 From Chaos to Order: Methodologies, Perspectives and Applications (Singapore: World-Scientific)
[2] Park Ju H, Ji D H, Won S C and Lee S M 2008 Appl. Math. Comput. 204 170
[3] Lee S M, Kwon O M and Park Ju H 2011 Chin. Phys. B 20 010506
[4] Lü J H and Chen G R 2002 Int. J. Bifur. Chaos 12 659
[5] Lü J H, Chen G R and Cheng D Z 2002 Int. J. Bifur. Chaos 12 2917
[6] Ott E, Grebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[7] Ghezi L and Peccardi C 1997 Automatic 33 181
[8] Lee S M, Choi S J, Ji D H, Park Ju H and Won S C 2010 Nonlinear Dyn. 59 277.
[9] Boulkroune A, Chekireb H, Tadjine M and Bouatmane S 2006 Int. J. Bifur. Chaos 16 189
[10] Park Ju H, Ji D H, Won S C and Lee S M 2009 Modern Phys. Lett. B 23 1157
[11] Chen D Y, Liu Y X, Ma X Y and Zhang R F 2011 Chin. Phys. B 20 120506
[12] Chen G R and Lü J H 2003 Dynamics of the Lorenz Systems Family: Analysis, Control and Synchronization (Beijing: Science Press) Chap. 8 (in Chinese)
[13] Liu H, Yu H J and Xiang W 2012 Acta Phys. Sin. 61 180503 (in Chinese)
[14] Peng J Z and D Rickey 2012 Expert Systems with Applications 39 8162
[15] Hung J Y, Gao W and Huang J C 1993 IEEE T. Ind. Electron. 40 2
[16] Wang L X and Mendel J M 1992 IEEE Trans. Neural Networks 3 807.
[17] Wang L X 1994 Adaptive Fuzzy Systems and Control: Design and Stability Anlysis (Englewood Cliffs: Prentice-Hall)
[18] Boulkroune A and M. M'saad M 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 4487
[19] Lin T C, Chen M C and Roopaei M 2011 Engineering Applications of Artificial Intelligence 24 39
[20] Nie M W and Tan W W 2011 Fuzzy Sets and Systems 179 1
[21] Lü J H, Yu X H and Chen G R 2003 IEEE Trans. Circ. Syst. I 50 198
[22] Lü J H, Chen G R, Yu X H and Leung H 2004 IEEE Trans. Circ. Syst. I 51 2476
[23] Lü J H, Han F L, Yu X H and Chen G R 2004 Automatica 40 1677
[24] Lü J H, Murali K, Sinha S, Leung H and Aziz-Alaoui M A 2008 Phys. Lett. A 372 3234
[25] Chang Y C 2001 IEEE Trans. Circ. Syst. I 48 889
[26] Hua C C, Guan X P and Shi P 2005 Chaos, Solitons and Fractals 23 757
[27] Slotine J E and Li W 1991 Applied Nonlinear Control (Englewood Cliffs: Prentice-Hall)
[28] Boulkroune A, Tadjine M, M'saad M and Farza M 2010 Fuzzy Sets and Systems 161 797
[29] Lü J H, Yu S M, Leung H and Chen G R 2006 IEEE Trans. Circ. Syst. I 53 149
[30] Lü J H and Chen G R 2006 Int. J. Bifur. Chaos 12 775
[31] Chen H K 2002 J. Sound. Vibr. 255 719
[1] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[4] Adaptive fuzzy synchronization for a class of fractional-order neural networks
Heng Liu(刘恒), Sheng-Gang Li(李生刚), Hong-Xing Wang(王宏兴), Guan-Jun Li(李冠军). Chin. Phys. B, 2017, 26(3): 030504.
[5] Fractional-order systems without equilibria: The first example of hyperchaos and its application to synchronization
Donato Cafagna, Giuseppe Grassi. Chin. Phys. B, 2015, 24(8): 080502.
[6] Robust sliding mode control for fractional-order chaotic economical system with parameter uncertainty and external disturbance
Zhou Ke (周柯), Wang Zhi-Hui (王智慧), Gao Li-Ke (高立克), Sun Yue (孙跃), Ma Tie-Dong (马铁东). Chin. Phys. B, 2015, 24(3): 030504.
[7] Applications of modularized circuit designs in a new hyper-chaotic system circuit implementation
Wang Rui (王蕊), Sun Hui (孙辉), Wang Jie-Zhi (王杰智), Wang Lu (王鲁), Wang Yan-Chao (王晏超). Chin. Phys. B, 2015, 24(2): 020501.
[8] A novel adaptive-impulsive synchronization of fractional-order chaotic systems
Leung Y. T. Andrew, Li Xian-Feng, Chu Yan-Dong, Zhang Hui. Chin. Phys. B, 2015, 24(10): 100502.
[9] Approximation-error-ADP-based optimal tracking control for chaotic systems with convergence proof
Song Rui-Zhuo (宋睿卓), Xiao Wen-Dong (肖文栋), Sun Chang-Yin (孙长银), Wei Qing-Lai (魏庆来). Chin. Phys. B, 2013, 22(9): 090502.
[10] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[11] A novel study for impulsive synchronization of fractional-order chaotic systems
Liu Jin-Gui (刘金桂). Chin. Phys. B, 2013, 22(6): 060510.
[12] Modified projective synchronization with complex scaling factors of uncertain real chaos and complex chaos
Zhang Fang-Fang (张芳芳), Liu Shu-Tang (刘树堂), Yu Wei-Yong (余卫勇). Chin. Phys. B, 2013, 22(12): 120505.
[13] Generalized synchronization between different chaotic maps via dead-beat control
Grassi G . Chin. Phys. B, 2012, 21(5): 050505.
[14] Exponential networked synchronization of master-slave chaotic systems with time-varying communication topologies
Yang Dong-Sheng(杨东升), Liu Zhen-Wei(刘振伟), Zhao Yan(赵琰), and Liu Zhao-Bing(刘兆冰) . Chin. Phys. B, 2012, 21(4): 040503.
[15] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan(黄渊), Nie Lin(聂林), Yu De-Liang(余德良), Liu Chun-Hua(刘春华), Feng Zhen(冯震), and Duan Xu-Ru(段旭如). Chin. Phys. B, 2011, 20(5): 055201.
No Suggested Reading articles found!