Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 118703    DOI: 10.1088/1674-1056/21/11/118703
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging

Wang Zhi-Li (王志立)a, Gao Kun (高昆)a, Chen Jian (陈健)a, Ge Xin (葛昕)a, Zhu Pei-Ping (朱佩平)b, Tian Yang-Chao (田扬超)a, Wu Zi-Yu (吴自玉 )a b
a National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China;
b Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  Grating-based X-ray phase contrast imaging has been demonstrated to be an extremely powerful phase-sensitive imaging technique. By using two-dimensional (2D) gratings, the observable contrast is extended to two refraction directions. Recently, we have developed a novel reverse-projection (RP) method, which is capable of retrieving the object information efficiently in one-dimensional (1D) grating-based phase contrast imaging. In this contribution, we present its extension to the 2D grating-based X-ray phase contrast imaging, named the two-dimensional reverse-projection (2D-RP) method, for information retrieval. The method takes into account the nonlinear contributions of two refraction directions and allows the retrieval of the absorption, the horizontal and the vertical refraction images. The obtained information can be used for the reconstruction of the three-dimensional phase gradient field, and for an improved phase map retrieval and reconstruction. Numerical experiments are carried out, and the results confirm the validity of the 2D-RP method.
Keywords:  X-ray imaging      phase contrast      information retrieval      shifting curve  
Received:  30 March 2012      Revised:  01 June 2012      Accepted manuscript online: 
PACS:  87.59.-e (X-ray imaging)  
  87.64.mh (Phase contrast and DIC)  
  42.30.Rx (Phase retrieval)  
Fund: Project supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-YW-N42), the Key Project of the National Natural Science Foundation of China (Grant No. 10734070), the National Natural Science Foundation of China (Grant No. 11205157), the National Basic Research Program of China (Grant Nos. 2009CB930804 and 2012CB825800), the Fundamental Research Funds for the Central Universities, China (Grant No. WK2310000021), and the China Postdoctoral Science Foundation (Grant No. 2011M501064).
Corresponding Authors:  Wu Zi-Yu     E-mail:  wuzy@ustc.edu.cn

Cite this article: 

Wang Zhi-Li (王志立), Gao Kun (高昆), Chen Jian (陈健), Ge Xin (葛昕), Zhu Pei-Ping (朱佩平), Tian Yang-Chao (田扬超), Wu Zi-Yu (吴自玉 ) A new method for information retrieval in two-dimensional grating-based X-ray phase contrast imaging 2012 Chin. Phys. B 21 118703

[1] Bonse U and Hart M 1965 Appl. Phys. Lett. 6 155
[2] Momose A, Takeda T, Itai Y and Hirano K 1996 Nature Med. 2 473
[3] Nugent K, Gureyev T, Cookson D, Paganin D and Barnea Z 1996 Phys. Rev. Lett. 77 2961
[4] Wilkins S, Gureyev T, Gao D, Pogany A and Stevenson A 1996 Nature 384 335
[5] Davis T, Gao D, Gureyev T, Stevenson A and Wilkins S 1995 Nature 373 595
[6] Chapman D, Thomlinson W, Johnston R, Washburn D, Pisano E, Gmur N, Zhong Z, Menk R, Arfelli F and Sayers D 1997 Phys. Med. Biol. 42 2015
[7] Momose A, Kawamoto S, Koyama I, Hamaishi Y, Takai K and Suzuki Y 2003 Jpn. J. Appl. Phys. 42 L866
[8] Momose A, Yashiro W, Takeda Y, Suzuki Y and Hattori T 2006 Jpn. J. Appl. Phys. 45 5254
[9] Weitkamp T, Daiz A, David C, Pfeiffer F, Stampanoni M, Cloetens P and Ziegler E 2005 Opt. Express 13 6296
[10] Pfeiffer F, Weitkamp T, Bunk O and David C 2006 Nature Phys. 2 258
[11] Pfeiffer F, Bech M, Bunk O, Kraft P, Eikenberry E, Bronnimann Ch, Grunzweig C and David C 2008 Nature Mater. 7 134
[12] Momose A and Fukuda J 1995 Med. Phys. 22 375
[13] Revol V, Kottler C, Kaufmann R, Jerjen I, Luthi T, Cardot F, Niedermann P, Straumann U, Sennhauser U and Urban C 2011 Nucl. Instrum. Meth. A 648 S302
[14] Kotter C, David C, Pfeiffer F and Bunk O 2007 Opt. Express 15 1175
[15] Zanette I, Weitkamp T, Donath T, Rutishauser S and David C 2010 Phys. Rev. Lett. 105 248102
[16] Wen H H, Bennet E E, Kopace R, Stein A F and Pai V 2010 Opt. Lett. 35 1932
[17] Itoh H, Nagai K, Sato G, Yamaguchi K, Nakamura T, Kondoh T, Ouchi C, Teshima T, Setomoto Y and Den T 2011 Opt. Express 19 3339
[18] Sato G, Kondoh T, Itoh H, Handa S, Yamaguchi K, Nakamura T, Nagai K, Ouchi C, Teshima T, Setomoto Y and Den T 2011 Opt. Lett. 36 3551
[19] Zhu P P, Zhang K, Wang Z L, Liu Y J, Liu X S, Wu Z Y, McDonald S A, Marone F and Stampanoni M 2010 Proc Natl. Acad. Sci. USA 107 13576
[20] Zanette I, David C, Rutishauser S and Weitkamp T 2010 AIP Conf. Proc. 1221 73
[21] Born M and Wolf E 1999 Principles of Optics (7th edn.) (New York: Cambridge University Press) p. 562
[22] Hasnah M O, Oltulu O, Chapman D, Zhong Z, Pisano E, Johnston R E, Sayers D and Thomlinson W 2002 Med. Phys. 29 2216
[23] Rutishauser S, Donath T, David C, Pferiffer F, Marone F, Modregger P and Stampanani M 2011 Opt. Express 19 24890
[24] Wang Z L, Liu X S, Zhu P P, Huang W X, Yuan Q X, Li E R, Liu Y J, Zhang K, Hong Y L and Wu Z Y 2010 Nucl. Instrum. Meth. A 619 319
[25] Ge X, Wang Z L, Gao K, Zhang K, Hong Y L, Wang D J, Zhu Z Z, Zhu P P and Wu Z Y 2011 Anal. Bioanal. Chem. 401 865
[26] Wang Z L, Zhu P P, Huang W X, Yuan Q X, Liu X S, Zhang K, Hong Y L, Zhang H T, Ge X, Gao K and Wu Z Y 2010 Anal. Bioanal. Chem. 397 2091
[27] Wang Z L, Zhu P P, Huang W X, Yuan Q X, Liu X S, Zhang K, Hong Y L, Zhang H T, Ge X, Gao K and Wu Z Y 2010 Anal. Bioanal. Chem. 397 2137
[28] Zhu P P, Wang J Y, Yuan Q X, Huang W X, Shu H, Gao B, Hu T D and Wu Z Y 2005 Appl. Phys. Lett. 87 264101
[29] Wang J Y, Zhu P P, Yuan Q X, Huang W X, Shu H, Chen B, Hu T D and Wu Z Y 2006 Phys. Med. Biol. 51 3391
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Analysis of refraction and scattering image artefacts in x-ray analyzer-based imaging
Li-Ming Zhao(赵立明), Tian-Xiang Wang(王天祥), Run-Kang Ma(马润康), Yao Gu(顾瑶), Meng-Si Luo(罗梦丝), Heng Chen(陈恒), Zhi-Li Wang(王志立), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(2): 028701.
[3] X-ray phase-sensitive microscope imaging with a grating interferometer: Theory and simulation
Jiecheng Yang(杨杰成), Peiping Zhu(朱佩平), Dong Liang(梁栋), Hairong Zheng(郑海荣), and Yongshuai Ge(葛永帅). Chin. Phys. B, 2022, 31(9): 098702.
[4] Efficient implementation of x-ray ghost imaging based on a modified compressive sensing algorithm
Haipeng Zhang(张海鹏), Ke Li(李可), Changzhe Zhao(赵昌哲), Jie Tang(汤杰), and Tiqiao Xiao(肖体乔). Chin. Phys. B, 2022, 31(6): 064202.
[5] Analysis of period and visibility of dual phase grating interferometer
Jun Yang(杨君), Jian-Heng Huang(黄建衡), Yao-Hu Lei(雷耀虎), Jing-Biao Zheng(郑景标), Yu-Zheng Shan(单雨征), Da-Yu Guo(郭大育), and Jin-Chuan Guo(郭金川). Chin. Phys. B, 2022, 31(5): 058701.
[6] Real time high accuracy phase contrast imaging with parallel acquisition speckle tracking
Zhe Hu(胡哲), Wen-Qiang Hua(滑文强), and Jie Wang(王 劼). Chin. Phys. B, 2021, 30(6): 064201.
[7] Quantitative coherence analysis of dual phase grating x-ray interferometry with source grating
Zhi-Li Wang(王志立), Rui-Cheng Zhou(周瑞成), Li-Ming Zhao(赵立明), Kun Ren(任坤), Wen Xu(徐文), Bo Liu(刘波), and Heng Chen(陈恒). Chin. Phys. B, 2021, 30(2): 028702.
[8] Retrieval of multiple scattering contrast from x-ray analyzer-based imaging
Heng Chen(陈恒), Bo Liu(刘波), Li-Ming Zhao(赵立明), Kun Ren(任坤), and Zhi-Li Wang(王志立). Chin. Phys. B, 2021, 30(1): 018701.
[9] Biases of estimated signals in x-ray analyzer-based imaging
Jianlin Xia(夏健霖), Wen Xu(徐文), Ruicheng Zhou(周瑞成), Xiaomin Shi(石晓敏), Kun Ren(任坤), Heng Chen(陈恒), Zhili Wang(王志立). Chin. Phys. B, 2020, 29(6): 068703.
[10] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[11] Theory and method of dual-energy x-ray grating phase-contrast imaging
Feng Rong(荣锋), Yan Gao(高艳), Cui-Juan Guo(郭翠娟), Wei Xu(徐微), Wei Xu(徐伟). Chin. Phys. B, 2019, 28(10): 108702.
[12] Shifting curves based on the detector integration effect for x-ray phase contrast imaging
Jun Yang(杨君), Jin-Chuan Guo(郭金川), Yao-Hu Lei(雷耀虎), Ming-Hao Yi(易明皓), Li Chen(陈力). Chin. Phys. B, 2017, 26(2): 028701.
[13] Signal-to-noise ratio comparison of angular signal radiography and phase stepping method
Wali Faiz, Peiping Zhu(朱佩平), Renfang Hu(胡仁芳), Kun Gao(高昆), Zhao Wu(吴朝), Yuan Bao(鲍园), Yangchao Tian(田扬超). Chin. Phys. B, 2017, 26(12): 120601.
[14] Single-shot grating-based x-ray differential phase contrast imaging with a modified analyzer grating
Chen-Xi Wei(卫晨希), Zhao Wu(吴朝), Faiz Wali, Wen-Bin Wei(魏文彬), Yuan Bao(鲍园), Rong-Hui Luo(骆荣辉), Lei Wang(王磊), Gang Liu(刘刚), Yang-Chao Tian(田扬超). Chin. Phys. B, 2017, 26(10): 108701.
[15] Wavefront sensing based on phase contrast theory and coherent optical processing
Lei Huang(黄磊), Qi Bian(边琪), Chenlu Zhou(周晨露), Tenghao Li(李腾浩), Mali Gong(巩马理). Chin. Phys. B, 2016, 25(7): 070701.
No Suggested Reading articles found!