Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(11): 114213    DOI: 10.1088/1674-1056/21/11/114213
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Temperature dependences of optical properties, chemical composition, structure, and laser damage in Ta2O5 films

Xu Cheng (许程)a b, Yang Shuai (杨帅)a, Zhang Sheng-Hui (张生辉)a, Niu Ji-Nan (牛继南)a, Qiang Ying-Huai (强颖怀)a, Liu Jiong-Tian (刘炯天)b, Li Da-Wei (李大伟 )c
a School of Materials Science and Engineering, China University of Mining and Technology, Xuzhou 221116, China;
b School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou 221116, China;
c Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
Abstract  Ta2O5 films are prepared by e-beam evaporation with varied deposition temperatures, annealing temperatures, and annealing time. The effects of temperature on the optical properties, chemical composition, structure, and laser-induced damage threshold (LIDT) are systematically investigated. The results show that the increase of deposition temperature decreases the film transmittance slightly, yet annealing below 923 K is beneficial for the transmittance. The XRD analysis reveals that the film is in the amorphous phase when annealed below 873 K and in the hexagonal phase when annealed at 1073 K. While an interesting near-crystalline phase is found when annealed at 923 K. The LIDT increases with the deposition temperature increasing, whereas it increases firstly and then decreases as the annealing temperature increases. In addition, the increase of annealing time from 4 h to 12 h is favorable to improving the LIDT, which is mainly due the improvement of the O/Ta ratio. The highest LIDT film is obtained when annealed at 923 K, owing to the lowest density of defect.
Keywords:  Ta2O5 film      laser damage      deposition      annealing  
Received:  14 May 2012      Revised:  29 May 2012      Accepted manuscript online: 
PACS:  42.79.-e (Optical elements, devices, and systems)  
  68.60.-p (Physical properties of thin films, nonelectronic)  
  81.15.Dj (E-beam and hot filament evaporation deposition)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61107080 and 50921002), the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2011223), the Specialized Research Fund for the Doctoral Program of Higher Education of China (New Teachers) (Grant No. 20110095120018), the China Postdoctoral Science Foundation (Grant No. 20110491472), and the Fundamental Research Funds for the Central Universities, China (Grant No. 2012QNA03).
Corresponding Authors:  Qiang Ying-Huai     E-mail:  yhqiang@cumt.edu.cn

Cite this article: 

Xu Cheng (许程), Yang Shuai (杨帅), Zhang Sheng-Hui (张生辉), Niu Ji-Nan (牛继南), Qiang Ying-Huai (强颖怀), Liu Jiong-Tian (刘炯天), Li Da-Wei (李大伟 ) Temperature dependences of optical properties, chemical composition, structure, and laser damage in Ta2O5 films 2012 Chin. Phys. B 21 114213

[1] Liu Z, Chen S, Ma P, Wei Y, Zheng Y, Pan F, Liu H and Tang G 2012 Opt. Express 20 854
[2] Xia Z, Zhao Y, Huang C, Xue Y and Guo P 2009 Opt. Commun. 282 970
[3] Xu C, Xiao Q, Ma J, Jin Y, Shao J and Fan Z 2008 Appl. Surf. Sci. 254 6554
[4] Yu H, Qi H, Cui Y, Shen Y, Shao J and Fan Z 2007 Appl. Surf. Sci. 253 6113
[5] Han W, Wang F, Zhou L, Feng B, Jia H, Li K, Xiang Y and Zheng W 2012 Chin. Phys. B 21 077901
[6] Jiang Y, Xiang X, Liu C, Luo C, Wang H, Yuan X, He S, Ren W, Lv H, Zheng W and Zu X 2012 Chin. Phys. B 21 064219
[7] Jagadeesh Chandra S V, Uthanna S and Mohan Rao G 2008 Appl. Sur. Sci. 254 1953
[8] Kukli K, Rital M, Matero R and Leskelä M 2000 J. Cryst. Growth 212 459
[9] Wolfe C R, Kozlowski M R, Campbell J H, Rainer F, Morgan A J and Gonzales R P 1989 Proc. SPIE 509 255
[10] Hu H, Fan Z and Luo F 2001 Appl. Opt. 40 1950
[11] ISO 11254-1:2000: Lasers and Laser-related Equipment-Determination of Laser-induced Damage Threshold of Optical Surfaces. Part 1. 1-on-1 test
[12] Boulouz M, Boulouz A, Giani A and Boyer A 1998 Thin Solid Films 323 85
[13] Yu H, Shen Y, Cui Y, Qi H, Shao J and Fan Z 2008 Appl. Surf. Sci. 254 1783
[14] Macleod H A 1986 J. Vac. Sci. Technol. A 4 418
[15] Atanassova E, Spassov D, Paskaleva A, Koprinarova J and Georgieva M 2002 Microelectron. J. 33 907
[16] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Rev. Mod. Phys. 64 1045
[17] Fleming R M, Lang D V, Jones C D W, Steigerwald M L, Murphy D W, Alers G B, Wong Y H, van Dover R B, Kwo J R and Sergent A M 2000 J. Appl. Phys. 88 850
[18] Sainz-Diaz C I, Hernandez-Laguna A and Dove M T 2001 Phys. Chem. Minerals 28 130
[19] Zhao Y, Gao W, Shao J and Fan Z 2004 Appl. Surf. Sci. 227 275
[20] Xu C, Ma J, Jin Y, He H, Shao J and Fan Z 2008 Chin. Phys. Lett. 25 1321
[21] Xu C, Qiang Y, Zhu Y, Shao J, Fan Z and Han J 2010 Opt. Laser Technol. 42 497
[22] Yuan L, Zhao Y, Shang G, Wang C, He H, Shao J and Fan Z 2007 J. Opt. Soc. Am. B 24 538
[23] Sawada H and Kawakami K 1999 J. Appl. Phys. 86 956
[24] Shinriki H, Kisu T, Kimura S, Nishioka Y, Kawamoto Y and Mukai K 1990 IEEE Trans. Electron Devices 37 1939
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[4] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[5] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[6] Phosphorus diffusion and activation in fluorine co-implanted germanium after excimer laser annealing
Chen Wang(王尘), Wei-Hang Fan(范伟航), Yi-Hong Xu(许怡红), Yu-Chao Zhang(张宇超), Hui-Chen Fan(范慧晨), Cheng Li(李成), and Song-Yan Cheng(陈松岩). Chin. Phys. B, 2022, 31(9): 098503.
[7] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[8] Introducing voids around the interlayer of AlN by high temperature annealing
Jianwei Ben(贲建伟), Jiangliu Luo(罗江流), Zhichen Lin(林之晨), Xiaojuan Sun(孙晓娟), Xinke Liu(刘新科), and Xiaohua Li(黎晓华). Chin. Phys. B, 2022, 31(7): 076104.
[9] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[10] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[11] Designing high k dielectric films with LiPON—Al2O3 hybrid structure by atomic layer deposition
Ze Feng(冯泽), Yitong Wang(王一同), Jilong Hao(郝继龙), Meiyi Jing(井美艺), Feng Lu(卢峰), Weihua Wang(王维华), Yahui Cheng(程雅慧), Shengkai Wang(王盛凯), Hui Liu(刘晖), and Hong Dong(董红). Chin. Phys. B, 2022, 31(5): 057701.
[12] The 50 nm-thick yttrium iron garnet films with perpendicular magnetic anisotropy
Shuyao Chen(陈姝瑶), Yunfei Xie(谢云飞), Yucong Yang(杨玉聪), Dong Gao(高栋), Donghua Liu(刘冬华), Lin Qin(秦林), Wei Yan(严巍), Bi Tan(谭碧), Qiuli Chen(陈秋丽), Tao Gong(龚涛), En Li(李恩), Lei Bi(毕磊), Tao Liu(刘涛), and Longjiang Deng(邓龙江). Chin. Phys. B, 2022, 31(4): 048503.
[13] Characterization of the N-polar GaN film grown on C-plane sapphire and misoriented C-plane sapphire substrates by MOCVD
Xiaotao Hu(胡小涛), Yimeng Song(宋祎萌), Zhaole Su(苏兆乐), Haiqiang Jia(贾海强), Wenxin Wang(王文新), Yang Jiang(江洋), Yangfeng Li(李阳锋), and Hong Chen(陈弘). Chin. Phys. B, 2022, 31(3): 038103.
[14] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[15] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
No Suggested Reading articles found!