|
|
Chen's lattice inversion embedded-atom method for Ni–Al alloy |
Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 ) |
University of Science and Technology Beijing, Institute of Applied Physics, Beijing 100083, China |
|
|
Abstract The structural properties, the enthalpies of formation, and the mechanical properties of some Ni-Al intermetallic compounds (NiAl, Ni3Al, NiAl3, Ni5Al3, Ni3Al4) are studied by using Chen's lattice inversion embedded-atom method (CLI-EAM). Our calculated lattice parameters and cohesive energies of Ni-Al compounds are consistent with the experimental and the other EAM results. The results of enthalpy of formation indicate a strong chemical interaction between Ni and Al in the intermetallic compounds. Through analyzing the alloy elastic constants, we find that all the Ni-Al intermetallic compounds discussed are mechanically stable. The bulk moduli of the compounds increase with the increasing Ni concentration. Our results also suggest that NiAl, Ni3Al, NiAl3, and Ni5Al3 are ductile materials with lower ratios of shear modulus to bulk modulus; while Ni3Al4 is brittle with a higher ratio.
|
Received: 21 May 2012
Revised: 03 July 2012
Accepted manuscript online:
|
PACS:
|
34.20.-b
|
(Interatomic and intermolecular potentials and forces, potential energy surfaces for collisions)
|
|
61.66.Dk
|
(Alloys )
|
|
62.20.-x
|
(Mechanical properties of solids)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606401). |
Corresponding Authors:
Zhang Chuan-Hui
E-mail: ym23_24@yahoo.com.cn
|
Cite this article:
Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 ) Chen's lattice inversion embedded-atom method for Ni–Al alloy 2012 Chin. Phys. B 21 113401
|
[1] |
Moverare J J, Johansson S and Reed R C 2009 Acta Mater. 57 2266
|
[2] |
Wang J, Shang S L, Wang Y, Mei Z G, Liang Y F, Du Y and Liu Z K 2011 Calphad 35 562
|
[3] |
Curtarolo S, Morgan D and Ceder G 2005 Calphad 29 163
|
[4] |
Shi D M, Wen B, Melnik R, Yao S and Lia T J 2009 J. Solid State Chem. 182 2664
|
[5] |
Zhang C L, Han P D, Li J M, Chi M, Yan L Y, Liu Y P, Liu X G and Xu B S 2008 J. Phys. D: Appl. Phys. 41 095410
|
[6] |
Zhang Y X, Wang J C, Yang Y J, Yang G C and Zhou R H 2009 Chin. Phys. B 18 4407
|
[7] |
Fan T Y and Li W 2011 Chin. Phys. B 20 036101
|
[8] |
Yu S, Wang C Y and Yu T 2007 Acta Phys. Sin. 56 3212 (in Chinese)
|
[9] |
Xiang Z D, Zeng D, Zhu C Y, Wu D J and Datta P K 2011 Corros. Sci. 53 3426
|
[10] |
Kataeva N V, Kositsyn S V and Valiullin 2006 Mater. Sci. Eng. A 438-440 312
|
[11] |
Chen D, Chen G L and Ni S 2008 J. Alloy Comp. 457 292
|
[12] |
Li C, Hou J and Zhao F G 2012 Mater. Lett. 68 255
|
[13] |
Major B 2005 Sol. Stat. Phen. 101-102 181
|
[14] |
Chen N X 1990 Phys. Rev. Lett. 64 1193
|
[15] |
Zhang W Q, Xie Q, Zhao X D and Chen N X 1998 Science in China A 28 183
|
[16] |
Finnis M W and Sinclair J E 1984 Philos. Mag. A 50 45
|
[17] |
Zhang S and Chen N X 2002 Phys. Rev. B 66 064106
|
[18] |
Long Y, Chen N X and Zhang W Q 2005 J. Phys.: Condens. Matter 17 2045
|
[19] |
Chen N X, Shen J and Su X P 2001 J. Phys.: Condens. Matter 13 2727
|
[20] |
Cai J, Hu X Y and Chen N X 2005 J. Phys. Chem. Sol. 66 1256
|
[21] |
Qian P, Liu J L, Hu Y W, Bai L J and Shen J 2010 Chin. Phys. B 19 126001
|
[22] |
Qian P, Liu J L and Hu Y W 2011 Chin. Phys. B 20 076104
|
[23] |
Zhang C H, Han J J, Huang S and Shen J 2011 Adv. Mater. Res. 320 415
|
[24] |
Morse P M 1929 Phys. Rev. 34 57
|
[25] |
Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
|
[26] |
Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
|
[27] |
Banerjea A and Smith J R 1988 Phys. Rev. B 37 6632
|
[28] |
Norskov J K and Lang N D 1980 Phys. Rev. B 21 2131
|
[29] |
Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
|
[30] |
Anderson O L 1963 J. Phys. Chem. Soli. 24 909
|
[31] |
Zhang B W, Hu W Y and Su X L 2003 Theory of Embedded Atom Method and Its Application to Materials Science-Atomic Scale Materials Design Theory (Hunan: Hunan University Press)
|
[32] |
Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
|
[33] |
Khadikikar P, Locci I, Vedula K and Michal G 1993 Met. Trans. A 24 83
|
[34] |
Liu Y P 2004 Termodynamics Properties and Point Defects of Intermetallics of Al Binary Alloys (Guangxi: Guangxi University)
|
[35] |
Yu S, Wang C Y, Yu T and Cai Jun 2007 Physica B 396 138
|
[36] |
Villars P and Calvert L 1997 Pearson's Handbook Desk Edition: Crystallographic Data for Intermetallic Phases (Materials Park: ASM International)
|
[37] |
Hultgren R, Desai P D, Hawkins D T, Gleiser N and Kelly K K 1973 Selected Values of Thermodynamic Properties of Binary Alloys (Materials Park: ASM International)
|
[38] |
Eskov V M, Samokhval V V and Vecher A A 1974 Russian Metallurgy 2 118
|
[39] |
Rzyman K and Moser Z 2004 Prog. Mater. Sci. 49 581
|
[40] |
Ren X, Otsuka K and Kogachi M 1999 Scr. Mater. 41 907
|
[41] |
Brandes E A 1983 Smithells Metals Reference Book (London: Butterworths)
|
[42] |
Farkas D, Mutasa B and Ternes K 1995 Modelling Simul. Mater. Sci. Eng. 3 201
|
[43] |
Rusovic N and Warlimont H 1977 Physica Status Solidi A 44 609
|
[44] |
Wasilewski R J 1966 Trans. TMS AIME 236 455
|
[45] |
Dickson R W, Wachtman J B and Copley S M 1969 J. Appl. Phys. 40 2276
|
[46] |
Prikhodko S V, Carnes J D, Isaak D G, Yang H and Ardell A J 1999 Metall. Mater. Trans. A 30 2403
|
[47] |
Nye J F 1985 Physical Properties of Crystals (Oxford: Oxford University)
|
[48] |
Beckstein O, Klepeis J E, Hart G L W and Pankratov O 2001 Phys. Rev. B 63 134112
|
[49] |
Haines J, Leger J M and Bocquillon G 2001 Annu. Rev. Mater. Res. 31 1
|
[50] |
Pugh S F 1954 The Philosophical Magazine 45 823
|
[51] |
Gaydosh D J, Jech R W and Titran R H 1985 J. Mater. Sci. Lett. 4 138
|
[52] |
Otto J W, Vassiliou J K and Frommeyer G 1997 J. Mater. Res. 12 3106
|
[53] |
Goto T, Sasaki T and Hirose Y 1999 JCPDS-International Centre for Diffraction Data 518
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|