Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 018501    DOI: 10.1088/1674-1056/21/1/018501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The breakdown mechanism of a high-side pLDMOS based on a thin-layer silicon-on-insulator structure

Zhao Yuan-Yuan(赵远远), Qiao Ming(乔明), Wang Wei-Bin(王伟宾), Wang Meng(王猛), and Zhang Bo(张波)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A high-side thin-layer silicon-on-insulator (SOI) pLDMOS is proposed, adopting field implant (FI) and multiple field plate (MFP) technologies. The breakdown mechanisms of back gate (BG) turn-on, surface channel punch-through, and vertical and lateral avalanche breakdown are investigated by setting up analytical models, simulating related parameters and verifying experimentally. The device structure is optimized based on the above research. The shallow junction achieved through FI technology attenuates the BG effect, the optimized channel length eliminates the surface channel punch-through, the advised thickness of the buried oxide dispels the vertical avalanche breakdown, and the MFP technology avoids premature lateral avalanche breakdown by modulating the electric field distribution. Finally, for the first time, a 300 V high-side pLDMOS is experimentally realized on a 1.5 μ m thick thin-layer SOI.
Keywords:  field implant technology      back gate punch-through      surface channel punch-through      avalanche breakdown  
Received:  17 June 2011      Revised:  18 July 2011      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
  84.70.+p (High-current and high-voltage technology: power systems; power transmission lines and cables)  
Fund: Project supported by National Natural Science Foundation of China (Grant No. 60906038).

Cite this article: 

Zhao Yuan-Yuan(赵远远), Qiao Ming(乔明), Wang Wei-Bin(王伟宾), Wang Meng(王猛), and Zhang Bo(张波) The breakdown mechanism of a high-side pLDMOS based on a thin-layer silicon-on-insulator structure 2012 Chin. Phys. B 21 018501

[1] Li Z J, Zhang B, Luo X R, Hu S D, Fang J, Li Z H, Qiao M and Guo Y F 2007 Proc. ICCCAS p. 1302
[2] Schwantes S, Florian T, Stephan T, Graf M and Dudek V 2005 IEEE Trans. Electron Dev. 52 1649
[3] Merchant S, Arnold E, Baumgart H, Egloff R, Letavic T, Mukherjee S and Pein H 1993 Proc. ISPSD p. 124
[4] Luo X R, Wang Y G, Deng H and Udrea F 2010 Chin. Phys. B 19 077306
[5] Wu L J, Hu S D, Zhang B and Li Z J 2011 Chin. Phys. B 20 027101.
[6] Zhang B, Li Z J, Hu S D and Luo X R 2009 IEEE Trans. Electron Dev. 56 2327
[7] Tian Y, Huang R, Zhang X and Wang Y Y 2007 Chin. Phys. 16 1743
[8] Hu S D, Z B, Li Z J and Luo X R 2010 Chin. Phys. B 19 037303.
[9] Balestra F and Cristoloveanu S 1995 Microelectronics 2 623
[10] Leung Y K, Kuehne S C, Huang V S K, Nguyen C T, Paul A K, Plummer J D and Wong S S 1996 Proc. SOI Conference p. 132
[11] Hu S D, Zhang B and Li Z J 2007 Chin. Phys. 18 1674
[12] Merchant S, Arnold E, Baumgart H, Mukherjee S, Pein H and Pinker R 1991 Proc. ISPSD p. 31
[13] Yang X M, Li T Q, Zhang B and Luo X R 2009 Proc. ASEMD p. 112
[14] Qiao M, Zhang B, Li Z J and Fang J 2007 Electron Lett. 43
[15] Hu S D, Zhang B and Li Z J 2008 Proc. EDSSC p. 1
[16] Hu S D, Li Z J and Zhang B 2008 Proc. ICCCAS p. 1274
[17] Qiao M, Zhang B, Li Z J, Fang J and Zhou X D 2007 Acta Phys. Sin. 56 3990 (in Chinese)
[18] Qiao M, Zhang B, Xiao Z Q, Fang J and Li Z J 2008 Proc. ISPSD p. 52
[19] Wessels P, Swanenberg M, Zwol H V, Krabbenborg B, Boezen H, Berkhout M and Grakist A 2007 Solid State Electron. 51 195
[20] Kobayashi K, Yanagigawa H, Mori K, Yamanaka S and Fujiwara A 1998 Proc. ISPSD p. 141
[21] Kim J, Roh T M, Kim S G, Lee D W and Koo J G 2001 IEEE Trans. Electron Dev. 48 1256
[22] Schwantes S, Florian T, Graf M, Dietz F and Dudek V 2004 Proc. ESSDERC p. 253
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[3] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[4] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[5] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] A polarization mismatched p-GaN/p-Al0.25Ga0.75N/p-GaN structure to improve the hole injection for GaN based micro-LED with secondary etched mesa
Yidan Zhang(张一丹), Chunshuang Chu(楚春双), Sheng Hang(杭升), Yonghui Zhang(张勇辉),Quan Zheng(郑权), Qing Li(李青), Wengang Bi(毕文刚), and Zihui Zhang(张紫辉). Chin. Phys. B, 2023, 32(1): 018509.
[8] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[9] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[10] Ozone oxidation of 4H-SiC and flat-band voltage stability of SiC MOS capacitors
Zhi-Peng Yin(尹志鹏), Sheng-Sheng Wei(尉升升), Jiao Bai(白娇), Wei-Wei Xie(谢威威), Zhao-Hui Liu(刘兆慧), Fu-Wen Qin(秦福文), and De-Jun Wang(王德君). Chin. Phys. B, 2022, 31(11): 117302.
[11] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[14] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[15] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
No Suggested Reading articles found!