Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 017805    DOI: 10.1088/1674-1056/21/1/017805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Room-temperature direct-bandgap photoluminescence from strain-compensated Ge/SiGe multiple quantum wells on silicon

Hu Wei-Xuan(胡炜玄), Cheng Bu-Wen(成步文), Xue Chun-Lai(薛春来), Zhang Guang-Ze(张广泽), Su Shao-Jian(苏少坚), Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  Strain-compensated Ge/Si0.15Ge0.85 multiple quantum wells were grown on an Si0.1Ge0.9 virtual substrate using ultrahigh vacuum chemical vapor deposition technology on an n+-Si(001) substrate. Photoluminescence measurements were performed at room temperature, and the quantum confinement effect of the direct-bandgap transitions of a Ge quantum well was observed, which is in good agreement with the calculated results. The luminescence mechanism was discussed by recombination rate analysis and the temperature dependence of the luminescence spectrum.
Keywords:  Ge      multiple quantum wells      strain compensated  
Received:  23 March 2011      Revised:  15 September 2011      Accepted manuscript online: 
PACS:  78.55.-m (Photoluminescence, properties and materials)  
  73.61.Cw (Elemental semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61036003, 61176013, 61177038, and 60906035), and the High Technology Research and Development Program of China (Grant No. 2011AA010302).

Cite this article: 

Hu Wei-Xuan(胡炜玄), Cheng Bu-Wen(成步文), Xue Chun-Lai(薛春来), Zhang Guang-Ze(张广泽), Su Shao-Jian(苏少坚), Zuo Yu-Hua(左玉华), and Wang Qi-Ming(王启明) Room-temperature direct-bandgap photoluminescence from strain-compensated Ge/SiGe multiple quantum wells on silicon 2012 Chin. Phys. B 21 017805

[1] Soref R and Fellow L 2006 IEEE J. Sel. Top. Quantum Electron. 12 1678
[2] Xue H Y, Xue C L, Cheng B W, Yu Y D and Wang Q M 2009 Chin. Phys. B 18 2542
[3] Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G and Campbell J C 2009 Nature Photonics 3 59
[4] Assefa S, Xia F N and Vlasov Y A 2010 Nature 464 80
[5] Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D and Wang Q M 2009 Appl. Phys. Lett. 95 092102
[6] Sun X C, Liu J F, Kimerling L C and Michel J 2009 Opt. Lett. 34 1198
[7] Liu J F, Sun X C, Aguilera R C, Kimerling L C and Michel J 2010 Opt. Lett. 35 679
[8] Cheng B W, Xue H Y, Hu D, Han G Q, Zeng Y G, Bai A Q, Xue C L, Luo L P, Zuo Y H and Wang Q M 2008 Proceedings of the Fifth IEEE International Conference on Group IV Photonics September, Sorrento (Italy) p. 140
[9] Halbwax M, Bouchier D, Yam V, DÉbarre D, Nguyen L H, Zheng Y, Rosner P, Benamara M, Strunk H P and Clerc C 2005 J. Appl. Phys. 97 064907
[10] Fidaner O, Okyay A K, Roth J E, Schaevitz R K, Kuo Y H, Saraswat K C, Harris J S and Miller D A B 2007 IEEE Photon. Technol. Lett. 19 1631
[11] Chaisakul P, Morini D M, Isella G, Chrastina D, Roux X L, Gatti E, Edmond S, Osmond J, Cassan E and Vivien L 2010 Opt. Lett. 35 2913
[12] Li S M, Song S M, Lü Y B, Wang A F, Wu A L and Zheng W M 2009 Acta Phys. Sin. 58 4936 (in Chinese)
[13] LeThanh V, Yam V, Meneceur N, Boucaud P, DÉbarre D and Bouchier D 2001 Mater. Phys. Mech. 4 94
[14] Varga K, Wang L G, Pantelides S T and Zhang Z Y 2004 Surface Science 562 L225
[15] People R and Bean J C 1985 Appl. Phys. Lett. 47 322
[16] Shin K W, Kim H W, Kim J, Yang C, Lee S and Yoon E 2010 Thin Solid Films 518 6496
[17] Hartmann J M, Papon A M, Destefanis V and Billon T 2008 J. Cryst. Growth 310 5287
[18] Ekins-Daukes N J, Kawaguchi K and Zhang J 2002 Crystal Growth & Design 2 287
[19] Liu J F, Cannon D D, Wada K, Ishikawa Y, Danielson D T, Jongthammanurak S, Michel J and Kimerling L C 2004 Phys. Rev. B 70 155309
[20] van de Walle C G 1989 Phys. Rev. B 39 1871
[21] Haynes J R 1955 Phys. Rev. 98 1866
[22] Liu J F, Sun X C, Pan D, Wang X X, Kimerling L C, Koch T L and Michel J 2007 Opt. Express 15 11272
[23] Ishikawa Y, Wada K, Cannon D D, Liu J F, Chiao L H and Kimerling L C 2003 Appl. Phys. Lett. 82 2044
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[3] Conductive path and local oxygen-vacancy dynamics: Case study of crosshatched oxides
Z W Liang(梁正伟), P Wu(吴平), L C Wang(王利晨), B G Shen(沈保根), and Zhi-Hong Wang(王志宏). Chin. Phys. B, 2023, 32(4): 047303.
[4] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[5] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[6] Light manipulation by dual channel storage in ultra-cold Rydberg medium
Xue-Dong Tian(田雪冬), Zi-Jiao Jing(景梓骄), Feng-Zhen Lv(吕凤珍), Qian-Qian Bao(鲍倩倩), and Yi-Mou Liu(刘一谋). Chin. Phys. B, 2023, 32(4): 044205.
[7] Micromagnetic study of magnetization reversal in inhomogeneous permanent magnets
Zhi Yang(杨质), Yuanyuan Chen(陈源源), Weiqiang Liu(刘卫强), Yuqing Li(李玉卿), Liying Cong(丛利颖), Qiong Wu(吴琼), Hongguo Zhang(张红国), Qingmei Lu(路清梅), Dongtao Zhang(张东涛), and Ming Yue(岳明). Chin. Phys. B, 2023, 32(4): 047504.
[8] Dynamic electrostatic-discharge path investigation relied on different impact energies in metal-oxide-semiconductor circuits
Tian-Tian Xie(谢田田), Jun Wang(王俊), Fei-Bo Du(杜飞波), Yang Yu(郁扬), Yan-Fei Cai(蔡燕飞), Er-Yuan Feng(冯二媛), Fei Hou(侯飞), and Zhi-Wei Liu(刘志伟). Chin. Phys. B, 2023, 32(4): 048501.
[9] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[10] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[11] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[12] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[13] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[14] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[15] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
No Suggested Reading articles found!