Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 014210    DOI: 10.1088/1674-1056/21/1/014210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Optical terminal analysis of a multigrating tiled compressor in a PW-class CPA-laser

Yang Yu-Chuan(杨雨川)a)b)†, Luo Hui(罗晖)a), Wang Xiao(王逍)b), Li Fu-Quan(李富全)b), Huang Xiao-Jun(黄小军)b), and Jing Feng(景峰)b)
a College of Optoelectric Science and Engineering, National University of Defense Technology, Changsha 410073, China; b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  In the highest-power chirped-pulse amplification lasers, the pulse must be stretched in time, amplified, compressed in a grating compressor and subsequently focused by off-axis parabola to obtain a high peak power. In the optical terminal, the temporal and spatial effects of mismatched multigrating tiled compressor on the far-field pulse are critical factors to be analysed. In this paper, a k-space raytracing model is proposed for the temporal and spatial analyses of possible errors in a four-grating single-pass tiled compressor. The results show that the last grating affects mainly the partial focal spot, while the middle two gratings affect the temporal waveform, and the partial focal spot needs much higher error control than that in the temporal domain in a picosecond pulse compression.
Keywords:  high-power chirped-pulse amplification lasers      optical terminal      multigrating tiled compressor      off-axis parabola  
Received:  06 April 2011      Revised:  05 July 2011      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.79.Dj (Gratings)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA8044005).

Cite this article: 

Yang Yu-Chuan(杨雨川), Luo Hui(罗晖), Wang Xiao(王逍), Li Fu-Quan(李富全), Huang Xiao-Jun(黄小军), and Jing Feng(景峰) Optical terminal analysis of a multigrating tiled compressor in a PW-class CPA-laser 2012 Chin. Phys. B 21 014210

[1] Waxer L J, Maywar D N, Kelly J H, Kessler T J, Kruschwitz B E, Loucks S J, Mccrory R L, Meyerhofer D D, Morse S F B, Stoeckl C and Zuegel J D 2005 Opt. Photonics News 16 30
[2] Blanc C L, Felix C, Lagron J C, Forget N, Hollander P, Sautivet A M, Sauteret C, Amiranoff F and Migus A 2003 IFSA X-608
[3] Habara H, Xu G and Jitsuno T 2010 Opt. Lett. 35 1783
[4] Qiao J, Kalb A, Guardalben M J, King G, Canning D and Kelly J H 2007 Opt. Express 15 9562
[5] Harimoto T 2004 Jpn. J. Appl. Phys. 43A 1362
[6] Rushford M C, Britten J A, Barty C P J, Jitsuno T, Kondo K, Miyanaga N, Tanaka K A, Kodama R and Xu G 2008 Opt. Lett. 33 1902
[7] Blanchot N, Bar E, Behar G, Bellet C, Bigourd D, Boubault F, Chappuis C, Co"hic H, Damiens-Dupont C, Flour O, Hartmann O, Hilsz L, Hugonnot E, Lavastre E, Luce J, Mazataud E, Neauport J, Noailles S, Remy B, Sautarel F, Sautet M and Rouyer C 2010 Opt. Express 18 10088
[8] Zhou B, Chen Y L, Li Y A and Li H W 2010 Acta Phys. Sin. 59 1816 (in Chinese)
[9] Ma X M and Zhang W P 2009 Journal of Guangxi University 34 858
[10] Zhang T J, Yonemura M and Kato Y 1998 Opt. Commun. 145 367
[11] Hornung M, Bodefeld R, Siebold M, Podleska S, Schnepp M, Hein J and Sauerbrey R 2005 Proc. SPIE 5962 59622k-1
[12] Zeng X H and Fan D Y 2010 Acta Phys. Sin. 59 6312 (in Chinese)
[13] Fiorini C, Sauteret C, Rouyer C, Blanchot N, Seznec S and Migus A 1994 IEEE J. Quantum Electron. 30 1662
[14] Fittinghoff D N, Walker B C, Squier J A, Toth C S, Rose-petruck C and Barty C P J 1998 IEEE J. Select. Topics Quantum Electron. 4 430
[15] Li B C, Theobald W and Welsch E 2000 Appl. Phys. B 71 819
[16] Treacy E 1969 IEEE J. Quantum Electron. QE25 454
[17] Miyanaga N, Azechi H, Tanaka K, Kanabe T, Jitsuno T, Kawanaka J, Fujimoto Y, Kodama R, Shiraga H, Knodo K, Tsubakimoto K, Habara H, Lu J, Xu G, Morio N, Matsuo S, Miyaji E, Kawakami Y, Izawa Y and Mima K 2006 J. Phys. IV France 133 81
[18] Laboratory for Laser Energetics 2006 S-AD-M-005
[1] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[2] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[3] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[4] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[5] Wavelength switchable mode-locked fiber laser with a few-mode fiber filter
Shaokang Bai(白少康), Yujin Xiang(向昱锦), and Zuxing Zhang(张祖兴). Chin. Phys. B, 2023, 32(2): 024209.
[6] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[7] Multiple collisions in crystal high-order harmonic generation
Dong Tang(唐栋) and Xue-Bin Bian(卞学滨). Chin. Phys. B, 2022, 31(12): 123202.
[8] Yield enhancement of elliptical high harmonics driven by bicircular laser pulses
Xiaofan Zhang(张晓凡) and Xiaosong Zhu(祝晓松). Chin. Phys. B, 2022, 31(11): 114209.
[9] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[10] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[11] High-dispersive mirror for pulse stretcher in femtosecond fiber laser amplification system
Wenjia Yuan(袁文佳), Weidong Shen(沈伟东), Chen Xie(谢辰), Chenying Yang(杨陈楹), and Yueguang Zhang(章岳光). Chin. Phys. B, 2022, 31(8): 087801.
[12] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[13] Photoelectron momentum distributions of Ne and Xe dimers in counter-rotating circularly polarized laser fields
Zhi-Xian Lei(雷志仙), Qing-Yun Xu(徐清芸), Zhi-Jie Yang(杨志杰), Yong-Lin He(何永林), and Jing Guo(郭静). Chin. Phys. B, 2022, 31(6): 063202.
[14] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[15] Strong-field response time and its implications on attosecond measurement
Chao Chen(陈超), Jiayin Che(车佳殷), Xuejiao Xie(谢雪娇), Shang Wang(王赏), Guoguo Xin(辛国国), and Yanjun Chen(陈彦军). Chin. Phys. B, 2022, 31(3): 033201.
No Suggested Reading articles found!