Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(4): 044102    DOI: 10.1088/1674-1056/24/4/044102
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation

Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良)
School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  

The evaporation duct which forms above the ocean surface has a significant influence on electromagnetic wave propagation above 2 GHz over the ocean. The effects of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation are investigated, both in numerical simulation and experimental observation methods, in this paper. Firstly, the features of the horizontal inhomogeneity of the evaporation duct are discussed. Then, two typical inhomogeneous cases are simulated and compared with the homogeneous case. The result shows that path loss is significantly higher than that in the homogeneous case when the evaporation duct height (EDH) at the receiver is lower than that at the transmitter. It is also concluded that the horizontal inhomogeneity of the evaporation duct has a significant influence when the EDH is low or when the electromagnetic wave frequency is lower than 13 GHz. Finally, experimental data collected on a 149-km long propagation path in the South China Sea in 2013 are used to verify the conclusion. The experimental results are consistent with the simulation results. The horizontal inhomogeneity of evaporation duct should be considered when modeling electromagnetic wave propagation over the ocean.

Keywords:  horizontal inhomogeneity      evaporation duct      electromagnetic wave propagation      evaporation duct experiment  
Received:  15 August 2014      Revised:  23 October 2014      Accepted manuscript online: 
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  94.20.ws (Electromagnetic wave propagation)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 11174235) and the Fundamental Research Funds for the Central Universities (Grant No. 3102014JC02010301).

Corresponding Authors:  Yang Kun-De     E-mail:  ykdzym@nwpu.edu.cn

Cite this article: 

Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良) Experimental verification of effect of horizontal inhomogeneity of evaporation duct on electromagnetic wave propagation 2015 Chin. Phys. B 24 044102

[1] Anderson K D 1990 IEEE Anten. Propag. 38 746
[2] Anderson K D 1995 IEEE Anten. Propag. 43 609
[3] Woods G S, Ruxton A, Huddlestone H and Gigan G 2009 IEEE J. Oceanic Eng. 73 265
[4] Hitney H V, Richter J H and Pappert R A 1985 Proc. IEEE 73 265
[5] Barrios A E 1994 IEEE Anten. Propag. 42 90
[6] Kuttle J R and Dockery G D 1991 Radio Sci. 26 381
[7] Donohue D J and Kuttler J R 2000 IEEE Anten. Propag. 48 260
[8] Dockey G D and Kuttler J R 1996 IEEE Trans. Anten. Propag. 44 1592
[9] Budden K G 1961 The Wave-Guide Mode Theory of Wave Propagation (Moscow: Logos Press) pp. 1-10
[10] Hitney H V 1992 IET Radar 92 International Conference, October 12-13, 1992, Brighton, USA, p. 58
[11] Babin S M Yong G S and Carton J A 1997 J. Appl. Meteorology 36 193
[12] Babin S M and Dockey 2002 J. Appl. Meteorology 41 434
[13] Yardim C Gerstoft P and Hodgkiss W S 2008 IEEE Trans. Anten. Propag. 56 1058
[14] Huang S X, Zhao X F and Sheng F 2009 Chin. Phys. B 18 5084
[15] Zhang J P, Wu Z S, Zhao Z W, Zhang Y S and Wang B 2012 Chin. Phys. B 21 109202
[16] Paulus R A 1985 Radio Sci. 20 887
[17] Musson G L Gauthier S and Bruth E 1992 Radio Sci. 27 635
[18] Kalnay E, Kanamitsu M, Kistler R, et al. 1996 Bulletin of the American Meteorological Society 77 437
[19] Saha S, Moorthi S, Pan H L, et al. 2010 Bulletin of the American Meteorological Society 91 1015
[20] Michalakes J, Chen S, Dudhia J, et al. 2001 Proceedings of the Ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology (London: World Scientific) p. 269
[21] Grell G A, Dudhia J and Stauffer D R 1994 NCAR Tech. Note NCAR/TN-398STR
[22] Hodur R M 1997 Mon. Wea. Rev. 125 1414
[23] Yang K D, Ma Y L and Shi Y 2009 Acta Phys. Sin. 58 7739 (in Chinese)
[24] Dockery G D 1988 IEEE Trans. Anten. Propag. 36 1464
[25] Barrios A E, Anderson K D and Gary L 2006 IEEE Trans. Anten. Propag. 54 2869
[1] Photonic crystal structures: Beam deflector and beam router
Utku Erdiven, Erkan Tetik, Faruk Karadag. Chin. Phys. B, 2018, 27(4): 044204.
[2] Influence of obstacle on electromagnetic wave propagation in evaporation duct with experiment verification
Shi Yang (史阳), Yang Kun-De (杨坤德), Yang Yi-Xin (杨益新), Ma Yuan-Liang (马远良). Chin. Phys. B, 2015, 24(5): 054101.
[3] Role of the aperture in Z-scan experiments: A parametric study
M. R. Rashidian Vaziri. Chin. Phys. B, 2015, 24(11): 114206.
[4] Remote sensing of atmospheric duct parameters using simulated annealing
Zhao Xiao-Feng(赵小峰), Huang Si-Xun(黄思训), Xiang Jie(项杰), and Shi Wei-Lai(施伟来) . Chin. Phys. B, 2011, 20(9): 099201.
[5] Waveguide resonance of subwavelength metallic slits
Chen Yue-Gang(陈跃刚), Wang Yan-Hua(王艳花), Zhang Yan (张岩), and Liu Shu-Tian(刘树田). Chin. Phys. B, 2007, 16(5): 1315-1319.
No Suggested Reading articles found!