Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 098901    DOI: 10.1088/1674-1056/20/9/098901
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Speeding up the MATLAB complex networks package using graphic processors

Zhang Bai-Da(张百达)a)†, Tang Yu-Hua(唐玉华)b), Wu Jun-Jie(吴俊杰)a), and Li Xin(李鑫)a)
a National laboratory for Parallel and Distributed Processing, School of Computer, National University of Defense Technology, Changsha 410073, China; b Department of Computer Science and Technology, School of Computer, National University of Defense Technology, Changsha 410073, China
Abstract  The availability of computers and communication networks allows us to gather and analyse data on a far larger scale than previously. At present, it is believed that statistics is a suitable method to analyse networks with millions, or more, of vertices. The MATLAB language, with its mass of statistical functions, is a good choice to rapidly realize an algorithm prototype of complex networks. The performance of the MATLAB codes can be further improved by using graphic processor units (GPU). This paper presents the strategies and performance of the GPU implementation of a complex networks package, and the Jacket toolbox of MATLAB is used. Compared with some commercially available CPU implementations, GPU can achieve a speedup of, on average, 11.3×. The experimental result proves that the GPU platform combined with the MATLAB language is a good combination for complex network research.
Keywords:  complex networks      graphic processors unit      MATLAB      Jacket Toolbox  
Received:  18 March 2011      Revised:  04 May 2011      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  87.23.Ge (Dynamics of social systems)  
  89.20.Hh (World Wide Web, Internet)  
  89.75.-k (Complex systems)  

Cite this article: 

Zhang Bai-Da(张百达), Tang Yu-Hua(唐玉华), Wu Jun-Jie(吴俊杰), and Li Xin(李鑫) Speeding up the MATLAB complex networks package using graphic processors 2011 Chin. Phys. B 20 098901

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Barab A L and Albert R 1999 Science 286 509
[3] Newman M E and Girvan M 2004 Phys. Rev. E 69 26113
[4] Barrat A, Barthelemy M and Vespignani A 2004 Phys. Rev. Lett. 22 228701
[5] Albert R and Barab A L 2002 Rev. Mod. Phys. 74 47
[6] Newman M E 2003 SIAM Rev. 45 167
[7] Cui D, Gao Z Y and Zhao X M 2008 Chin. Phys. B 17 1703
[8] Zhang C X, Li H and Lin P 2008 Chin. Phys. B 17 4458
[9] NVIDIA 2003 SIAM Review 45 167
[10] The AccelerEyes 2011 Jacket User Guide http://www.accelereyes.com
[11] Nickolls J 2010 Stanford CS 193G Lecture 15 56 72
[12] Hennessy J L, Patterson D A and Goldberg D 2003 Computer Architecture: A Quantitative Approach 3rd edn. (San Francisco: Morgan Kaufmann) pp. 128—132
[13] Newman M 2002 Phys. Rev. Lett. 89 208701
[14] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 373
[15] Rodrigues F, Travieso G and Boas V 2007 Adv. Phys. 56 167
[16] Shen Y 2011 Chin. Phys. B 20 511
[17] Tang Y, Wong W K, Fang J A and Miao Q Y 2011 Chin. Phys. B 20 513
[18] Wang S J, Wu Z X, Dong H R and Chen G R 2011 Chin. Phys. B 20 903
[19] Ryoo S, Rodrigues C I, Stone S S, Stratton J A, Ueng S Z, Baghsorkhi S S and Hwu W W 2008 Journal of Parallel and Distributed Computing 68 1389
[20] Ryoo S, Rodrigues C I, Stone S S, Baghsorkhi S S, Ueng S Z, Stratton J A and Hwu W W 2008 newblock Program Optimization Space Pruning for a Multithreaded GPU
[21] Shane R, Ryoo S, Rodrigues C I, Baghsorkhi S S, Stone S S, Kirk D B, et al. 2007 Parallel Comput. 33 663
[22] Messmer P, Mullowney P J and Granger B E 2008 Computing in Science and Engineering 10 70
[23] The GP-you group 2011 GPUmat User Guide
[24] Choy R and Edelman A 2005 Proc. IEEE 93 331
[25] Kong J, Dimitrov M, Yang Y, Liyanage J, Cao L, Staples J, Mantor M and Zhou H 2010 Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics Processing Units pp. 78—85
[26] Szafaryn L G, Skadron K and Saucerman J J 2009 Biomedicine in Computing: Systems, Architectures, and Circuits 32 1
[27] Moore N and Leeser M 2009 High Performance Embedded Computing Workshop
[28] Brodtkorb A R 2008 Scientific Computing on Heterogeneous Architectures 12 109
[29] Fatica M and Jeong W K 2007 Proceedings of the Eleventh Annual High Performance Embedded Computing Workshop, Lexington, Massachusetts 2007 pp. 18—20
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!