Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 094210    DOI: 10.1088/1674-1056/20/9/094210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Propagation properties of partially coherent Hermite–Gaussian beams through non-Kolmogorov turbulence

He Xue-Mei(何雪梅) and Lü Bai-Da(吕百达)
Institute of Laser Physics and Chemistry, Sichuan University, Chengdu 610064, China
Abstract  The propagation properties of partially coherent Hermite—Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intensity evolution and the beam-width spreading are stressed. It is found that the evolution of the average intensity distribution and the beam-width spreading depends on the generalized exponent factor, namely, on the non-Kolmogorov turbulence strength for the paraxial case. For the non-paraxial case the effect of the turbulence is negligible, while the beam-width spreading becomes very large. The analytical results are illustrated numerically and interpreted physically.
Keywords:  non-Kolmogorov turbulence      partially coherent paraxial and non-paraxial Hermite—Gaussian beams      propagation  
Received:  16 January 2011      Revised:  26 April 2011      Accepted manuscript online: 
PACS:  42.68.Ay (Propagation, transmission, attenuation, and radiative transfer)  
  42.68.Bz (Atmospheric turbulence effects)  
  42.25.Dd (Wave propagation in random media)  
  42.25.Fx (Diffraction and scattering)  

Cite this article: 

He Xue-Mei(何雪梅) and Lü Bai-Da(吕百达) Propagation properties of partially coherent Hermite–Gaussian beams through non-Kolmogorov turbulence 2011 Chin. Phys. B 20 094210

[1] Andrews L C and Phillips R L 1998 Laser Beam Propagation Through Random Media (Bellingham: SPIE)
[2] Young C Y, Gilchrest Y V and Macon B R 2002 Opt. Eng. 41 1097
[3] Korotkova O, Andrews L C and Phillips R L 2004 Opt. Eng. 43 330
[4] Eyyubovglu H T and Baykal Y 2005 Appl. Opt. 44 976
[5] Eyyubovglu H T 2005 Opt. Commun. 245 37
[6] Li J, Yang A and Lü B 2008 J. Opt. Soc. Am. A 25 2670
[7] Ji X, Chen X and Lü B 2008 J. Opt. Soc. Am. A 25 21
[8] Yuan Y, Cai Y, Qu J, Eyyubovglu H T and Baykal Y 2009 Opt. Express 17 11130
[9] Wu J 1990 J. Mod. Opt. 37 671
[10] Gbur G and Wolf E 2002 J. Opt. Soc. Am. A 19 1592
[11] Salem M, Shirai T, Dogarin A and Wolf E 2003 Opt. Commun. 216 261
[12] Shirai T, Dogariu A and Wolf E 2003 J. Opt. Soc. Am. A 20 1094
[13] Chen X, Tang M and Ji X 2008 Acta Phys. Sin. 57 2607 (in Chinese)
[14] Li J, Yang A and Lü B 2009 Acta Phys. Sin. 58 674 (in Chinese)
[15] Stribling B E, Welsh B M and Roggemann M C 1995 Proc. SPIE 2471 181
[16] Be1enkii M S, Karis S J, Brown II J M and Fugate R Q 2010 Proc. SPIE 3126 113
[17] Beland R R 2010 Proc. SPIE 2375 6
[18] Toselli I, Andrews L C, Phillips R L and Ferreroa V 2007 Proc. SPIE 6551 65510E
[19] Toselli I, Andrews L C, Phillips R L and Ferreroa V 2008 Opt. Eng. 47 026003
[20] Wu G, Guo H, Yu S and Luo B 2010 Opt. Lett. 35 715
[21] Chu X, Qiao C and Feng X 2010 Opt. Commun. 283 3398
[22] Siegman A E 1986 Lasers (Mill Valley: University Science Books)
[23] Zahid M and Zubairy M S 1989 Opt. Commun. 70 361
[24] Li J, Lü B and Zhu S 2009 Opt. Express 17 11399
[25] Ciattoni A, Corsignani B and Poort P D 2002 Opt. Commun. 202 17
[26] Lü B and Duan K 2003 Opt. Lett. 28 2440
[27] Gradshteyn I S and Ryzhik I M 2007 Table of Integrals Series and Products (New York: Academic Press)
[28] Borah D K and Voelz D G 2010 Opt. Express 18 20746
[1] Propagation of light near the band edge in one-dimensional multilayers
Yang Tang(唐洋), Lingjie Fan(范灵杰), Yanbin Zhang(张彦彬), Tongyu Li(李同宇), Tangyao Shen(沈唐尧), and Lei Shi(石磊). Chin. Phys. B, 2023, 32(4): 044209.
[2] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Effect of porous surface layer on wave propagation in elastic cylinder immersed in fluid
Na-Na Su(苏娜娜), Qing-Bang Han(韩庆邦), Ming-Lei Shan(单鸣雷), and Cheng Yin(殷澄). Chin. Phys. B, 2023, 32(1): 014301.
[5] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[6] Wave mode computing method using the step-split Padé parabolic equation
Chuan-Xiu Xu(徐传秀) and Guang-Ying Zheng(郑广赢). Chin. Phys. B, 2022, 31(9): 094301.
[7] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[8] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[9] Ergodic stationary distribution of a stochastic rumor propagation model with general incidence function
Yuhuai Zhang(张宇槐) and Jianjun Zhu(朱建军). Chin. Phys. B, 2022, 31(6): 060202.
[10] Correlation and trust mechanism-based rumor propagation model in complex social networks
Xian-Li Sun(孙先莉), You-Guo Wang(王友国), and Lin-Qing Cang(仓林青). Chin. Phys. B, 2022, 31(5): 050202.
[11] Long range electromagnetic field nature of nerve signal propagation in myelinated axons
Qing-Wei Zhai(翟卿伟), Kelvin J A Ooi(黄健安), Sheng-Yong Xu(许胜勇), and C K Ong(翁宗经). Chin. Phys. B, 2022, 31(3): 038701.
[12] Dynamics and near-optimal control in a stochastic rumor propagation model incorporating media coverage and Lévy noise
Liang'an Huo(霍良安) and Yafang Dong(董雅芳). Chin. Phys. B, 2022, 31(3): 030202.
[13] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[14] Propagation dynamics of dipole breathing wave in lossy nonlocal nonlinear media
Jian-Li Guo(郭建丽), Zhen-Jun Yang(杨振军), Xing-Liang Li(李星亮), and Shu-Min Zhang(张书敏). Chin. Phys. B, 2022, 31(1): 014203.
[15] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
No Suggested Reading articles found!