Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 090504    DOI: 10.1088/1674-1056/20/9/090504
GENERAL Prev   Next  

Security analysis of a one-way hash function based on spatiotemporal chaos

Wang Shi-Hong(王世红)a)† and Shan Peng-Yang(单鹏洋)b)
a School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China; b International School, Beijing University of Posts and Telecommunications, Beijing 100876, China
Abstract  The collision and statistical properties of a one-way hash function based on spatiotemporal chaos are investigated. Analysis and simulation results indicate that collisions exist in the original algorithm and, therefore, the original algorithm is insecure and vulnerable. An improved algorithm is proposed to avoid the collisions.
Keywords:  collision      spatiotemporal chaos      hash function  
Received:  11 January 2011      Revised:  15 May 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  

Cite this article: 

Wang Shi-Hong(王世红) and Shan Peng-Yang(单鹏洋) Security analysis of a one-way hash function based on spatiotemporal chaos 2011 Chin. Phys. B 20 090504

[1] Cuomo L M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65
[2] Lu H P, Wang S H, Li X W, Tang G N, Kuang J Y, Ye W P and Hu G 2004 Chaos 14 617
[3] Chen G, Mao Y and Chui C K A 2003 Chaos Soliton. Fract. 21 749
[4] Xiao D, Liao X and Deng S 2005 Chaos Soliton. Fract. 24 65
[5] Wang S and Hu G 2007 Chaos 17 023119
[6] Wang X, Yin Y and Yu H Finding Collisions in the Full SHA-1, https://www.infosec.sdu.edu.cn/paper
[7] Wang Y, Liao X F, Xiao D and Wong K W 2008 Information Sciences 178 1391
[8] Ren H J, Wang Y, Xie Q and Yang H Q 2009 Chaos Soliton. Fract. 42 2014
[9] Xiao D, Liao X F and Deng S J 2008 Phys. Lett. A 372 4682
[10] Amin M, Faragallah O S and El-Latif A A 2009 Chaos Soliton. Fract. 42 767
[11] Xiao D, Liao X F and Wang Y 2009 Neurocomputing 72 2288
[12] Wang J Z, Wang Y L and Wang M Q 2006 Acta Phys. Sin. 55 5048 (in Chinese)
[13] Wang J Z, Wang M Q and Wang Y L 2008 Acta Phys. Sin. 57 2737 (in Chinese)
[14] Guo W, Wang X M, He D K and Cao Y 2009 Phys. Lett. A 373 3201
[1] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[2] Localized nonlinear waves in a myelinated nerve fiber with self-excitable membrane
Nkeh Oma Nfor, Patrick Guemkam Ghomsi, and Francois Marie Moukam Kakmeni. Chin. Phys. B, 2023, 32(2): 020504.
[3] Atomic structure and collision dynamics with highly charged ions
Xinwen Ma(马新文), Shaofeng Zhang(张少锋), Weiqiang Wen(汶伟强), Zhongkui Huang(黄忠魁), Zhimin Hu(胡智民), Dalong Guo(郭大龙), Junwen Gao(高俊文), Bennaceur Najjari, Shenyue Xu(许慎跃), Shuncheng Yan(闫顺成), Ke Yao(姚科), Ruitian Zhang(张瑞田), Yong Gao(高永), and Xiaolong Zhu(朱小龙). Chin. Phys. B, 2022, 31(9): 093401.
[4] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[5] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[6] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[7] Nd L-shell x-ray emission induced by light ions
Xian-Ming Zhou(周贤明), Jing Wei(尉静), Rui Cheng(程锐), Yan-Hong Chen(陈燕红),Ce-Xiang Mei(梅策香), Li-Xia Zeng(曾利霞), Yu Liu(柳钰), Yan-Ning Zhang(张艳宁), Chang-Hui Liang(梁昌慧), Yong-Tao Zhao(赵永涛), and Xiao-An Zhang(张小安). Chin. Phys. B, 2022, 31(6): 063204.
[8] The influence of collision energy on magnetically tuned 6Li-6Li Feshbach resonance
Rong Zhang(张蓉), Yong-Chang Han(韩永昌), Shu-Lin Cong(丛书林), and Maksim B Shundalau. Chin. Phys. B, 2022, 31(6): 063402.
[9] Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇). Chin. Phys. B, 2022, 31(6): 065203.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[12] Electron excitation processes in low energy collisions of hydrogen-helium atoms
Kun Wang(王堃), Chuan Dong(董川), Yi-Zhi Qu(屈一至), Ling Liu(刘玲), Yong Wu(吴勇),Xu-Hai Hong(洪许海), and Robert J. Buenker. Chin. Phys. B, 2022, 31(12): 123401.
[13] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[14] Terahertz radiation generation by beating of two chirped laser pulses in a warm collisional magnetized plasma
Motahareh Arefnia, Mehdi Sharifian, and Mohammad Ghorbanalilu. Chin. Phys. B, 2021, 30(9): 094101.
[15] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
No Suggested Reading articles found!