CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Identification and elimination of inductively coupled plasma-induced defects in AlxGa1 - xN/GaN heterostructures |
Lin Fang(林芳)a), Shen Bo(沈波)a)† , Lu Li-Wu(卢励吾)a), Liu Xin-Yu(刘新宇)b), Wei Ke(魏珂)b), Xu Fu-Jun(许福军)a), Wang Yan(王彦)a), Ma Nan(马楠)a), and Huang Jun(黄俊)b) |
a State Key Laboratory of Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China; b Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China |
|
|
Abstract By using temperature-dependent Hall, variable-frequency capacitance—voltage and cathodoluminescence (CL) measurements, the identification of inductively coupled plasma (ICP)-induced defect states around the AlxGa1 - xN/GaN heterointerface and their elimination by subsequent annealing in AlxGa1 - xN/GaN heterostructures are systematically investigated. The energy levels of interface states with activation energies in a range from 0.211 to 0.253 eV below the conduction band of GaN are observed. The interface state density after the ICP-etching process is as high as 2.75 × 1012 cm - 2·eV - 1. The ICP-induced interface states could be reduced by two orders of magnitude by subsequent annealing in N2 ambient. The CL studies indicate that the ICP-induced defects should be Ga-vacancy related.
|
Received: 30 November 2010
Revised: 25 March 2011
Accepted manuscript online:
|
PACS:
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
73.20.Hb
|
(Impurity and defect levels; energy states of adsorbed species)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
73.50.Dn
|
(Low-field transport and mobility; piezoresistance)
|
|
Cite this article:
Lin Fang(林芳), Shen Bo(沈波), Lu Li-Wu(卢励吾), Liu Xin-Yu(刘新宇), Wei Ke(魏珂), Xu Fu-Jun(许福军), Wang Yan(王彦), Ma Nan(马楠), and Huang Jun(黄俊) Identification and elimination of inductively coupled plasma-induced defects in AlxGa1 - xN/GaN heterostructures 2011 Chin. Phys. B 20 077303
|
[1] |
Adesida I, Youtsey C, Ping A T, Khan F, Romano L T and Bulmann G 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G1.4
|
[2] |
Chen C H, Keller S, Haberer E D, Zhang L, Denbaars S P, Hy E L and Wu Y 1999 J. Vac. Sci. Technol. B 17 2755
|
[3] |
Ping A T, Chen Q, Yang J W, Khan M A and Adesida I 1998 J. Electron. Mater. 27 261
|
[4] |
Pearton S, Abermathy C R, Ren F, Lothian J R, Wisk P W and Katz A 1993 J. Vac. Sci. Technol. A 11 1772
|
[5] |
Eddy Jr C R and Molnar B 1999 J. Electron. Mater. 28 314
|
[6] |
Mouffak Z, Bensaoula A and Trombetta L 2004 J. Appl. Phys. 95 727
|
[7] |
Wang X, Yu G, Lei B, Wang X, Lin C, Sui Y, Meng S, Qi M and Li A 2007 J. Electron. Mater. 36 697
|
[8] |
Vertiatchikh A V, Eastman L F, Schaff W J and Prunty T 2002 Electron. Lett. 38 388
|
[9] |
Hashizume T, Ootomo S, Inagaki T and Hasegawa H 2003 J. Vac. Sci. Technol. B 21 1828
|
[10] |
Shah P B, Smith D D, Griffin T E, Jones K A and Sheppard S T 2000 IEEE Trans. Electron Devices 47 308
|
[11] |
Maeda N, Tsubaki K, Saitoh T and Kobayashi N 2001 Appl. Phys. Lett. 79 1634
|
[12] |
Wang M J, Shen B, Xu F J, Wang Y, Xu J, Huang S, Yang Z J, Xu K and Zhang G Y 2007 Appl. Phys. A 88 715
|
[13] |
Smorchkova I P, Elsass C R, Ibbetson J P, Vetury R, Heying B, Fini P, Haus E, DenBaars S P, Speck J S and Mishra U K 1999 J. Appl. Phys. 86 4520
|
[14] |
Cai Y, Zhou Y G, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
|
[15] |
Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H and Tao X M 2006 Appl. Phys. Lett. 89 143505
|
[16] |
Miller E J, Dang X Z, Wieder H H, Asbeck P M, Yu E T, Sullivan G J and Redwing J M 2000 J. Appl. Phys. 87 8070
|
[17] |
özdemir A F, Türüt A and Kökcce A 2003 Thin Solid Films 425 210
|
[18] |
Lehovec K 1966 Appl. Phys. Lett. 8 48
|
[19] |
Nakamura W, Tokuda Y, Ueda H and Kachi T 2006 Physica B 376—377 516
|
[20] |
Soh C B, Chua S J, Lim H F, Chi D Z, Tripathy S and Liu W 2004 J. Appl. Phys. 96 1341
|
[21] |
Buttari D, Chini A, Palacios T, Coffie R, Shen L, Xing H, Heikman S, McCarthy L, Chakraborty A, Keller S and Mishra U K 2003 Appl. Phys. Lett. 83 4779
|
[22] |
Hacke P, Detchprohm T, Hiramatsu K, Sawaki N, Tadatomo K and Miyake K 1994 J. Appl. Phys. 76 304
|
[23] |
Fang Z Q, Look D C, Jasinski J, Benamara M, Liliental-Weber Z and Molnar R J 2001 Appl. Phys. Lett. 78 332
|
[24] |
Fang Z Q, Look D C, Wang X L, Han J, Khan F A and Adesida I 2003 Appl. Phys. Lett. 82 1562
|
[25] |
Fang Z Q, Hemsky J W, Look D C and Mack M P 1998 Appl. Phys. Lett. 72 448
|
[26] |
Auret F D, Goodman S A, Koschnick F K, Spaeth J M, Beaumont B and Gibart P 1998 Appl. Phys. Lett. 73 3745
|
[27] |
Cho H K, Kim K S, Hong C H and Lee H J 2001 J. Cryst. Growth 223 38
|
[28] |
Wang C D, Yu L S, Lau S S, Yu E T, Kim W, Botchkarev A E and Morkocc H 1998 Appl. Phys. Lett. 72 1211
|
[29] |
Fang Z Q, Look D C, Kim W, Fan Z, Botchkarev A and Morkocc H 1998 Appl. Phys. Lett. 72 2277
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|