Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070501    DOI: 10.1088/1674-1056/20/7/070501
GENERAL Prev   Next  

An efficient chaotic source coding scheme with variable-length blocks

Lin Qiu-Zhen(林秋镇)a), Wong Kwok-Wo(黄国和)a), and Chen Jian-Yong(陈剑勇)b)
a Department of Electronic Engineering, City University of Hong Kong, Hong Kong 999077, China; b Department of Computer Science and Technology, Shenzhen University, Shenzhen 518060, China
Abstract  An efficient chaotic source coding scheme operating on variable-length blocks is proposed. With the source message represented by a trajectory in the state space of a chaotic system, data compression is achieved when the dynamical system is adapted to the probability distribution of the source symbols. For infinite-precision computation, the theoretical compression performance of this chaotic coding approach attains that of optimal entropy coding. In finite-precision implementation, it can be realized by encoding variable-length blocks using a piecewise linear chaotic map within the precision of register length. In the decoding process, the bit shift in the register can track the synchronization of the initial value and the corresponding block. Therefore, all the variable-length blocks are decoded correctly. Simulation results show that the proposed scheme performs well with high efficiency and minor compression loss when compared with traditional entropy coding.
Keywords:  chaos      compression      source coding      finite-precision implementation  
Received:  24 November 2010      Revised:  27 January 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  

Cite this article: 

Lin Qiu-Zhen(林秋镇), Wong Kwok-Wo(黄国和), and Chen Jian-Yong(陈剑勇) An efficient chaotic source coding scheme with variable-length blocks 2011 Chin. Phys. B 20 070501

[1] Hayes S, Grebogi C and Ott E 1993 Phys. Rev. Lett. 70 3031
[2] Escribano F J, Kozic S, López L, Sanju'an M A F and Hasler M 2009 IEEE Trans. Commun. 57 597
[3] Li H J and Zhang J S 2010 Chin. Phys. B 19 050508
[4] Wong K W and Yuen C H 2008 IEEE Trans. Circuits Syst. II, Exp. Briefs 55 1193
[5] Wang F L 2010 Chin. Phys. B 19 090505
[6] Liu S B, Sun J, Xu Z Q and Liu J S 2009 Chin. Phys. B 18 5219
[7] Luca M B, Serbanescu A, Azou S and Burel G 2004 it IEEE-Communications Bucharest, Romania, June 3—5, 2004
[8] Nagaraj N, Vaidya P G and Bhat K G 2009 Commun. Nonlinear Sci. Numer. Simulat. 14 1013
[9] Witten I H, Neal R M and Cleary J G 1987 Commun. ACM. bf 30 520
[10] Chan D Y and Ku C Y 2005 Appl. Math. Comput. 167 976
[11] Chan D Y, Yang J F and Chen S Y 2001 IEEE Trans. Circuits Syst. Video Technol. 11 581
[12] Hardy Y and Sabatta D 2007 Phys. Lett. A 366 575
[13] Wong K W, Lin Q Z and Chen J Y 2010 IEEE Trans. Circuits Syst. II, Exp. Briefs 57 146
[14] Files are available at: ftp://ftp.cpsc.ucalgary.ca/pub/-projects/text.compression.corpus
[15] Said A 2004 Hewlett-Packard Laboratories Report, HPL-2004-76, Palo Alto, CA. Available at: http://www.-hpl.-hp.-com/techreports/2004/HPL-2004-76.pdf.
[1] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[2] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[3] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[4] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[5] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[6] Nanobubbles produced by hydraulic air compression technique
Xiaodong Yang(杨晓东), Qingfeng Yang(杨庆峰), Limin Zhou(周利民),Lijuan Zhang(张立娟), and Jun Hu(胡钧). Chin. Phys. B, 2022, 31(5): 054702.
[7] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[8] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[9] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[12] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[13] Nonlinear dynamics analysis of cluster-shaped conservative flows generated from a generalized thermostatted system
Yue Li(李月), Zengqiang Chen(陈增强), Zenghui Wang(王增会), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(1): 010501.
[14] Dynamics analysis in a tumor-immune system with chemotherapy
Hai-Ying Liu(刘海英), Hong-Li Yang(杨红丽), and Lian-Gui Yang(杨联贵). Chin. Phys. B, 2021, 30(5): 058201.
[15] Control of chaos in Frenkel-Kontorova model using reinforcement learning
You-Ming Lei(雷佑铭) and Yan-Yan Han(韩彦彦). Chin. Phys. B, 2021, 30(5): 050503.
No Suggested Reading articles found!