Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 065205    DOI: 10.1088/1674-1056/20/6/065205
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Driving frequency effects on the mode transition in capacitively coupled argon discharges

Liu Xiang-Mei(刘相梅), Song Yuan-Hong(宋远红), and Wang You-Nian(王友年)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  A one-dimensional fluid model is employed to investigate the discharge sustaining mechanisms in the capacitively coupled argon plasmas, by modulating the driving frequency in the range of 40 kHz-60 MHz. The model incorporates the density and flux balance of electron and ion, electron energy balance, as well as Poisson's equation. In our simulation, the discharge experiences mode transition as the driving frequency increases, from the $\gamma$ regime in which the discharge is maintained by the secondary electrons emitted from the electrodes under ion bombardment, to the $\alpha$ regime in which sheath oscillation is responsible for most of the electron heating in the discharge sustaining. The electron density and electron temperature at the centre of the discharge, as well as the ion flux on the electrode are figured out as a function of the driving frequency, to confirm the two regimes and transition between them. The effects of gas pressure, secondary electron emission coefficient and applied voltage on the discharge are also discussed.
Keywords:  capacitively coupled plasma      mode transition      Ar discharge  
Received:  30 November 2010      Revised:  30 January 2011      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.25.-b (Plasma properties)  
  52.80.Pi (High-frequency and RF discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10775025), the Scientiˉc Research Fund of Liaoning Provincial Education Department for Colleges and Universities (Grant No. 2008T229), and the Program for New Century Excellent Talents in University (Grant No. NCET-08-0073).

Cite this article: 

Liu Xiang-Mei(刘相梅), Song Yuan-Hong(宋远红), and Wang You-Nian(王友年) Driving frequency effects on the mode transition in capacitively coupled argon discharges 2011 Chin. Phys. B 20 065205

[1] Chapman B 1980 Glow Discharge Process (New York: Wiley) Chap. 5
[2] Berezhnoi S V, Kaganovich I K and Tsendin L D 1998 Plasma Phys. Rep. 24 556
[3] Turner M M, Hutchinson D A W, Doyle R A and Hopkins M B 1996 Phys. Rev. Lett. 76 2069
[4] Godyak V A, Piejak R B and Alexandrovich B M 1992 Phys. Rev. Lett. 68 40
[5] Beneking C 1990 J. Appl. Phys. 68 4461
[6] Godyak V A, Piejak R B and Alexandrovich B M 1991 IEEE Trans. Plasma Sci. 19 660
[7] Yuan Y, Ye C, Huang H W, Shi G F and Ning Z Y 2010 Chin. Phys. B 19 065205
[8] Godyak V A and Kanneh A S 1986 IEEE Trans. Plasma Sci. PS-14 112
[9] Belenguer Ph and Boeuf J P 1990 Phys. Rev. A 41 4447
[10] Godyak V A and Piejak R B 1990 Phys. Rev. Lett. 65 996
[11] Kim H C and Lee J K 2004 Phys. Rev. Lett. 93 085003
[12] You S J, Chung C W, Bai K H and Chang H Y 2002 Appl. Phys. Lett. 81 2529
[13] Lisovskiy V, Booth J P, Landry K, Douai D, Cassagne V and Yegorenkov V 2007 J. Phys. D: Appl. Phys. 40 6631
[14] Lisovskiy V, Booth J P, Jolly J, Martins S, Landry K, Douai D, Cassagn V and Yegorenkov V 2007 J. Phys. D: Appl. Phys. 40 6989
[15] Walsh J L, Zhang Y T, Iza F and Konga M G 2008 Appl. Phys. Lett. 93 221505
[16] Moon Se Youn, Kim D B, Gweon B and Choe W 2008 Appl. Phys. Lett. 93 221506
[17] Ni T L, Ke B, Zhu X D, Arefi-Khonsari F and Pulpytel J 2008 Plasma Sources Sci. Technol. 17 045006
[18] Conti S, Porshnev P I, Fridman A, Kennedy L A, Grace J M, Sieber K D, Freeman D R and Robinson K S 2001 Experimental Thermal and Fluid Science 24 79
[19] Shimozuma M, Tochitani G, Ohno H, Tagashira H and Nakahara J 1989 J. Appl. Phys. 66 447
[20] Kang S S, Kim B S, Park D K and Yang S H 1996 Phys. Rev. B 54 8919
[21] Lelievre J F, De la Torre J, Kaminski A, Bremond G, Lemiti M, Bouayadi Rechid El, Araujo Daniel, Epicier Thierry, Monna R, Pirot M, Ribeyron P J and Jaussaud C 2006 Thin Solid Films 511-512 103
[22] Gogolides E and Sawin H H 1992 J. Appl. Phys. 72 3971
[23] Bukowski J D, Graves D B and Vitello P 1996 J. Appl. Phys. 80 2614
[24] Lymberopoulos D P and Economou D J 1993 J. Appl. Phys. 73 3668
[25] Nitschke T E and Graves D B 1994 J. Appl. Phys. 76 5646
[26] Boeuf J P and Pitchford L C 1995 Phys. Rev. E 51 1376
[27] Economou D J, Evans D R and Alkire R C 1988 J. Electrochem. Soc. 135 756
[28] Zhang Y R, Xu X and Wang Y N 2010 Phys. Plasmas 17 033507
[1] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[2] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[3] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[4] Measurement of electronegativity during the E to H mode transition in a radio frequency inductively coupled Ar/O2 plasma
Peng-Cheng Du(杜鹏程), Fei Gao(高飞, Xiao-Kun Wang(王晓坤), Yong-Xin Liu(刘永新), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(3): 035202.
[5] Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O2
Dao-Man Han(韩道满), Yong-Xin Liu(刘永新), Fei Gao(高飞), Wen-Yao Liu(刘文耀), Jun Xu(徐军), You-Nian Wang(王友年). Chin. Phys. B, 2018, 27(6): 065202.
[6] Effect of driving frequency on electron heating in capacitively coupled RF argon glow discharges at low pressure
Tagra Samir, Yue Liu(刘悦), Lu-Lu Zhao(赵璐璐), Yan-Wen Zhou(周艳文). Chin. Phys. B, 2017, 26(11): 115201.
[7] Simulation of nanoparticle coagulation in radio-frequency C2H2/Ar microdischarges
Xiang-Mei Liu(刘相梅), Qi-Nan Li(李奇楠), Rui Li(李瑞). Chin. Phys. B, 2016, 25(6): 065203.
[8] A 0.33-THz second-harmonic frequency-tunable gyrotron
Zheng-Di Li(李铮迪), Chao-Hai Du(杜朝海), Xiang-Bo Qi(戚向波), Li Luo(罗里), Pu-Kun Liu(刘濮鲲). Chin. Phys. B, 2016, 25(2): 029401.
[9] One-dimensional hybrid simulation of the electrical asymmetry effectcaused by the fourth-order harmonic in dual-frequencycapacitively coupled plasma
Shuai Wang(王帅), Hai-Feng Long(龙海凤), Zhen-Hua Bi(毕振华), Wei Jiang(姜巍), Xiang Xu(徐翔), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(11): 115202.
[10] Influence of dielectric materials on uniformity of large-area capacitively coupled plasmas for N2/Ar discharges
Ying-Shuang Liang(梁英爽), Yu-Ru Zhang(张钰如), You-Nian Wang(王友年). Chin. Phys. B, 2016, 25(10): 105206.
[11] Discontinuity of mode transition and hysteresis in hydrogen inductively coupled plasma via a fluid model
Xu Hui-Jing (徐会静), Zhao Shu-Xia (赵书霞), Gao Fei (高飞), Zhang Yu-Ru (张钰如), Li Xue-Chun (李雪春), Wang You-Nian (王友年). Chin. Phys. B, 2015, 24(11): 115201.
[12] Mode transition in homogenous dielectric barrier discharge in argon at atmospheric pressure
Liu Fu-Cheng (刘富成), He Ya-Feng (贺亚峰), Wang Xiao-Fei (王晓菲). Chin. Phys. B, 2014, 23(7): 075209.
[13] Characteristics of dual-frequency capacitively coupled SF6/O2 plasma and plasma texturing of multi-crystalline silicon
Xu Dong-Sheng (徐东升), Zou Shuai (邹帅), Xin Yu (辛煜), Su Xiao-Dong (苏晓东), Wang Xu-Sheng (王栩生). Chin. Phys. B, 2014, 23(6): 065201.
[14] The effects of process conditions on the plasma characteristic in radio-frequency capacitively coupled SiH4/NH3/N2 plasmas: Two-dimensional simulations
Liu Xiang-Mei (刘相梅), Song Yuan-Hong (宋远红), Jiang Wei (姜巍), Yi Lin (易林). Chin. Phys. B, 2013, 22(4): 045204.
[15] Changes of the electron dynamics in hydrogen inductively coupled plasma
Gao Fei (高飞), Liu Wei (刘巍), Zhao Shu-Xia (赵书霞), Zhang Yu-Ru (张钰如), Sun Chang-Sen (孙长森), Wang You-Nian (王友年). Chin. Phys. B, 2013, 22(11): 115205.
No Suggested Reading articles found!