|
|
A new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology for practical quantum key distribution system |
Zhong Ping-Ping(钟平平)a), Zhang Hua-Ni(张华妮) a), Wang Jin-Dong(王金东)a)†, Qin Xiao-Juan(秦晓娟)b), Wei Zheng-Jun(魏正军) a), Chen Shuai(陈帅)a), and Liu Song-Hao(刘颂豪)a) |
a Key Laboratory of Photonic Information Technology of Guangdong Higher Education Institutes SIPSE & LQIT, South China Normal University, Guangzhou 510006, China; b Guangdong Radio & TV University, Guangzhou 510091, China |
|
|
Abstract Three clock synchronization schemes for a quantum key distribution system are compared experimentally through the outdoor fibre and the interaction physical model of the the clock signal and the the quantum signal in the quantum key distribution system is analysed to propose a new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology to reduce quantum bits error rates under some transmission rate conditions. The proposed synchronization scheme can not only completely eliminate noise photons from the bright background light of the the clock signal, but also suppress the fibre nonlinear crosstalk.
|
Received: 11 July 2010
Revised: 22 November 2010
Accepted manuscript online:
|
PACS:
|
03.67.-a
|
(Quantum information)
|
|
03.67.Hk
|
(Quantum communication)
|
|
42.50.Ex
|
(Optical implementations of quantum information processing and transfer)
|
|
Fund: Project supported by the Key Projects in the Guangzhou Science & Technology Pillar Program of China (Grant No. 2008Z1-D501), the Guangdong Key Technologies Research & Development Program of China (Grant No. 2007B010400009), the Guangdong Polytechnic Institute Scientific Research Fund, China (Grant No. 0901), and the Key Laboratory Program of Quantum Information of Chinese Academy of Sciences. |
Cite this article:
Zhong Ping-Ping(钟平平), Zhang Hua-Ni(张华妮), Wang Jin-Dong(王金东), Qin Xiao-Juan(秦晓娟), Wei Zheng-Jun(魏正军), Chen Shuai(陈帅), and Liu Song-Hao(刘颂豪) A new synchronization scheme based on time division multiplexing and wavelength division multiplexing technology for practical quantum key distribution system 2011 Chin. Phys. B 20 050307
|
[1] |
Bennett C H and Brassard G 1984 Proceedings of IEEE International Conference on Computers, Systems and Signal Processing Bangalore India, December 1984, pp. 175--179
|
[2] |
Ekert A K 1991 Phys. Rev. Lett. 67 661
|
[3] |
Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
|
[4] |
Bennett C H 1992 Phys. Rev. Lett. 68 3121
|
[5] |
Koashi M and Imoto N 1997 Phys. Rev. Lett. 79 2383
|
[6] |
Huttner B, Imoto N, Gisin N and Mor T 1995 Phys. Rev. A 51 1863
|
[7] |
Zhang H N, Wang J D, Liu X B, Wei Z J and Liu S H 2009 Opt. Commun. 282 3037
|
[8] |
Wang J D, Qin X J, Zhang H N, Wei Z J, Liao C J and Liu S H 2009 Opt. Commun. 282 3379
|
[9] |
Long G L and Liu X S 2002 Phys. Rev. A 65 032302
|
[10] |
Inamori H, Lütkenhaus N and Mayers D 2007 Eur. Phys. J. D 41 599
|
[11] |
Gottesman D, Lo H K, Lütkenhaus N and Preskill J 2004 Quant. Inf. Comput. 4 325
|
[12] |
Won-Young H 2003 Phys. Rev. Lett. 91 057901
|
[13] |
Wang X B 2005 Phys. Rev. Lett. 94 230503
|
[14] |
Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
|
[15] |
Zhao Y, Qi B, Ma X F, Lo H K and Li Q 2006 Phys. Rev. Lett. 96 070502
|
[16] |
Zhao Y, Adve R and Lim T J 2006 Proceedings of IEEE International Symposium on Information Theory Seattle, July 9--14, 2006, pp. 2094--2098
|
[17] |
Rosenberg D, Harrington J W, Rice P R, Hiskett P A, Peterson C G, Hughes R J, Lita A E, Nam S W and Nordholt J E 2007 Phys. Rev. Lett. 98 010503
|
[18] |
Zhang X Z, Gong W G, Tan Y G, Ren Z Z and Guo X T 2009 Chin. Phys. B 18 2143
|
[19] |
Xu F X, Chen W, Wang S, Yin Z Q, Zhang Y, Liu Y, Zhou Z, Zhao Y B, Li H W, Liu D, Han Z F and Guo G C 2009 Chin. Sci. Bull. 54 2991
|
[20] |
Buller G S, Collins R J, Clarke P J, Fernandez V, Gordon K J, Hiskett P A and Townsend P D 2009 Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics Shanghai, August 30--September 3, 2009, pp. 1, 2
|
[21] |
Wen H, Han Z F, Guo G C and Hong P L 2009 Chin Phys. B 18 46
|
[22] |
Migdall A L, Branning D and Castelletto S 2002 Phys. Rev. A 66 053805
|
[23] |
Fasel S, Alibart O, Tanzilli S, Baldi P, Beveratos A, Gisin N and Zavatta A 2004 N. J. Phys. 6 163
|
[24] |
Goldschmidt E A, Eisaman M D, Fan J, Polyakov S and Migdall A 2008 Phys. Rev. A 78 013844
|
[25] |
McMillan A R, Fulconis J, Halder M, Xiong C, Rarity J G and Wadsworth W J 2009 Opt. Express 17 6156
|
[26] |
Takesue H, Nam S W, Zhang Q, Hadfield R H, Honjo T, Tamaki K and Yamamoto Y 2007 Nature Photonics 6 343
|
[27] |
Hiroki T, Toshimori H, Kiyoshi T and Yasuhiro T 2009 IEEE Communications Magazine 09 0163
|
[28] |
Akihiro T, Mikio F, Sae Woo N, Yoshihiro N, Seigo T, Wakako M, Ken-ichiro Y, Shigehito M, Burm B, Wang Z, Akio T, Masahide S and Akihisa T 2008 Opt. Express 16 11354
|
[29] |
Alexios B, Rosa B, Thierry G andré V, Jean-Philippe P and Philippe G 2002 Phys. Rev. Lett. 89 187901
|
[30] |
Mo X F, Zhu B Han Z F, Gui Y Z and Guo G C 2005 Opt. Lett. 30 2632
|
[31] |
Gordon K J, Fernandez V, Townsend P D and Buller G S 2004 IEEE J. Quant. Electro. 40 900
|
[32] |
Da Silva T F and von der Weid J P 2009 Journal of Microwaves Optoelectronics and Electromagnetic Applications 8 163S
|
[33] |
Akihisa T, Ken-ichiro Y, Yoshihiro N, Akio T, Akihiro T Seigo T, Wakako M, Shigehito M, Wang Z, Mikio F and Masahi S 2010 Opt. Fiber Technol. 16 55
|
[34] |
Maeda M W, Sessa W B, Way W I, Yi-Yan A, Curtis L, Spicer R and Laming R I 1990 J. Lightwave Technol. 8 1402
|
[35] |
Christodoulides D N and Joseph R I 1989 J. Quant. Electro. 25 273
|
[36] |
Stolen R H and Johnson A M 1986 J. Quant. Electro. 22 2154
|
[37] |
Poppe A, Huebel H, Karinou F, Blauensteiner B, Schrenk B, Lorünser T, Mayenburg M, Querasser E and Zeilinger A 2007 Proc. 33rd European Conference on Optical Communication Berlin, September 16--20, 2007, p. 9.4.7
|
[38] |
Chapuran T E, Toliver P, Peters N A, Jacke J, Goodman M S, Runser R J, McNown S R, Dallmann N, Hughes R J, McCabe K P, Nordholt J E, Peterson C G, Tyagi K T, Mercer L and Dardy H 2009 New J. Phys. 11 105001
|
[39] |
Agrawall G P 2004 Fiber-optic Communication Systems (3rd ed.) (Beijing: Tsinghua University Press) pp. 38, 39 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|