Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047701    DOI: 10.1088/1674-1056/20/4/047701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thickness shear mode quartz crystal resonators with optimized elliptical electrodes

Ma Ting-Feng(马廷锋)a), Zhang Chao(张超)b)† , Jiang Xiao-Ning(江小宁)c), and Feng Guan-Ping(冯冠平)a)b)
a Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China; b Center for Information and Optomechatronics, Research Institute of Tsinghua University in Shenzhen, Shenzhen 518057, China; c Department of Mechanical & Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
Abstract  Quartz crystal resonators (QCRs) with circular electrodes have been widely used for various liquid and gas sensing applications. In this work, quartz crystal resonators with elliptical electrodes were studied and tested for liquid property measurement. Mindlin's theory was used to optimize the dimension and geometry of the electrodes and a 5-MHz QCR with minimum series resistance and without any spurious modes was obtained. A series of AT-cut QCRs with elliptical electrodes of different sizes were fabricated and their sensing performances were compared to devices with circular electrodes. The experimental result shows that the device with elliptical electrodes can obtain lower resonance impedance and a higher Q factor, which results in a better loading capability. Even though the sensitivities of devices with elliptical and circular electrodes are found to be similar, the sensor with elliptical electrodes has much higher resolution due to a better frequency stability. The study indicates that the performance of QCRs with elliptical electrodes is superior to that of traditional QCRs with circular electrodes.
Keywords:  quartz crystal resonator      elliptical electrode      liquid sensing  
Received:  12 May 2010      Revised:  21 December 2010      Accepted manuscript online: 
PACS:  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  77.65.-j (Piezoelectricity and electromechanical effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60571014).

Cite this article: 

Ma Ting-Feng(马廷锋), Zhang Chao(张超), Jiang Xiao-Ning(江小宁), and Feng Guan-Ping(冯冠平) Thickness shear mode quartz crystal resonators with optimized elliptical electrodes 2011 Chin. Phys. B 20 047701

[1] Sauerbrey G 1959 Z. Phys. 155 206
[2] Kanazawa K K and Gordon J G 1985 Anal. Chim. Acta 117 99
[3] Mecea V M 1994 Sensors and Actuators A: Physical 40 1
[4] Richardson A, Bhethanabotla V R, Smith A L and Josse F 2009 IEEE Sensors Journal 9 1772
[5] Zhou R N, Menon A and Josse F 1997 IEEE International Frequency Control Symposium Orlando, USA, May 28--30 p. 56
[6] Zhang C and Vetelino J F 2000 IEEE International Ultrasonics Symposium San Juan, Argentina, Octorber 22--25 p. 421
[7] Ma T F, Zhang C, Feng G P and Jiang X N 2010 Chin. Phys. B 19 087701
[8] Wang W Y, Zhang C, Zhang Z T, Liu Y and Feng G P 2009 Chin. Phys. B 18 795
[9] Wang J, Shen L J and Yang J S 2008 Ultrasonics 48 150
[10] Mindlin R D 1968 J. Acoust. Soc. Am. 43 1329
[11] Yang Z T and Yang J S 2009 IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 56 237
[12] Yang Z T, Yang J S and Hu Y T 2008 Appl. Phys. Lett. 92 103516
[13] Xu L M, Geng Y L, Hu Y T, Fan H and Yang J S 2009 IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control 56 875
[14] Sekimoto H 1984 IEEE Trans. Sonia Ultrason. SU-31 664
[15] Li H Q 2005 Acta Phys. Sin. 54 1361 (in Chinese)
[16] Martin J, Granstaff V E and Frye G C 1991 Anal. Chem. 63 2272
[17] IEEE 1999 IEEE Standard Definitions of Physical Quantities for Fundamental Frequency and Time Metrology--Random Instabilities p. 1139
[18] Yao S Z 1997 Piezoelectric Chem/Biosensors (Changsha, Hunan Normal University Press) p. 178 endfootnotesize
[1] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[2] A pure dielectric metamaterial absorber with broadband and thin thickness based on a cross-hole array structure
Wenbo Cao(曹文博), Youquan Wen(温又铨), Chao Jiang(姜超), Yantao Yu(余延涛), Yiyu Wang(王艺宇), Zheyipei Ma(麻哲乂培), Zixiang Zhao(赵子翔), Lanzhi Wang(王兰志), and Xiaozhong Huang(黄小忠). Chin. Phys. B, 2022, 31(11): 117801.
[3] Ferroelectric Ba0.75Sr0.25TiO3 tunable charge transfer in perovskite devices
Zi-Xuan Chen(陈子轩), Jia-Lin Sun(孙家林), Qiang Zhang(张强), Chong-Xin Qian(钱崇鑫), Ming-Zi Wang(王明梓), and Hong-Jian Feng(冯宏剑). Chin. Phys. B, 2022, 31(5): 057202.
[4] Insight into influence of thermodynamic coefficients on transient negative capacitance in Zr-doped HfO2 ferroelectric capacitors
Yuan-Yuan Zhang(张元元), Xiao-Qing Sun(孙晓清), Jun-Shuai Chai(柴俊帅), Hao Xu(徐昊), Xue-Li Ma(马雪丽), Jin-Juan Xiang(项金娟), Kai Han(韩锴), Xiao-Lei Wang(王晓磊), and Wen-Wu Wang(王文武). Chin. Phys. B, 2021, 30(12): 127701.
[5] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[6] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[7] Effects of bismuth on structural and dielectric properties of cobalt-cadmium spinel ferrites fabricated via micro-emulsion route
Furhaj Ahmed Sheikh, Muhammad Khalid, Muhammad Shahzad Shifa, H M Noor ul Huda Khan Asghar, Sameen Aslam, Ayesha Perveen, Jalil ur Rehman, Muhammad Azhar Khan, Zaheer Abbas Gilani. Chin. Phys. B, 2019, 28(8): 088701.
[8] Structure instability-induced high dielectric properties in[001]-oriented 0.68Pb(Mg1/3Nb2/3)O3-0.33PbTiO3 crystals
Xiao-Juan Li(李晓娟), Xing Fan(樊星), Zeng-Zhe Xi(惠增哲), Peng Liu(刘鹏), Wei Long(龙伟), Pin-Yang Fang(方频阳), Rui-Hua Nan(南瑞华). Chin. Phys. B, 2019, 28(5): 057701.
[9] Structures and local ferroelectric polarization switching properties of orthorhombic YFeO3 thin film prepared by a sol-gel method
Runlan Zhang(张润兰), Shuaishuai Li(李帅帅), Changle Chen(陈长乐), Li-An Han(韩立安), Shanxin Xiong(熊善新). Chin. Phys. B, 2019, 28(3): 037701.
[10] Epitaxially strained SnTiO3 at finite temperatures
Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇). Chin. Phys. B, 2018, 27(12): 127702.
[11] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[12] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[13] Off-stoichiometry indexation of BiFeO3 thin film on silicon by Rutherford backscattering spectrometry
Ze-Song Wang(王泽松), Ren-Zheng Xiao(肖仁政), Chang-Wei Zou(邹长伟), Wei Xie(谢伟), Can-Xin Tian(田灿鑫), Shu-Wen Xue(薛书文), Gui-Ang Liu(刘贵昂), Neena Devi, De-Jun Fu(付德君). Chin. Phys. B, 2018, 27(4): 047901.
[14] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[15] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
No Suggested Reading articles found!