Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024212    DOI: 10.1088/1674-1056/20/2/024212
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Electro-optical properties of polymer stabilized cholesteric liquid crystal film

Ma Ji(马骥)a),Zheng Zhi-Gang(郑致刚)b), Liu Yong-Gang(刘永刚)a),and Xuan Li(宣丽)a)
a State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China; b Department of Physics, School of Science, East China University of Science and Technology, Shanghai 200237, China
Abstract  Liquid crystals (LCs) and polymers are extensively used in various electro-optical applications. In this paper, normal mode polymer stabilized cholesteric LC film is prepared and studied. The effects of chiral dopant and monomer concentrations on the electro-optical properties, such as contrast ratio, driving voltage, hysteresis width and response time, are investigated. The reasons of electro-optical properties influenced by the concentrations of the materials are discussed. Through the proper material recipe, the electro-optical properties of polymer stabilized cholesteric LC film can be optimized.
Keywords:  liquid crystal      polymer      electro-optical property      cholesteric liquid crystal  
Received:  27 May 2010      Revised:  25 June 2010      Accepted manuscript online: 
PACS:  42.70.Df (Liquid crystals)  
  42.79.Kr (Display devices, liquid-crystal devices)  
  61.30.Gd (Orientational order of liquid crystals; electric and magnetic field effects on order)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
Fund: Project partially supported by the National Natural Science Foundation of China (Grant Nos. 60736042, 60578035 and 50703039) and the Science Foundation of Jilin Province of China (Grant Nos. 20050520 and 20050321-2).

Cite this article: 

Ma Ji(马骥), Zheng Zhi-Gang(郑致刚), Liu Yong-Gang(刘永刚), and Xuan Li(宣丽) Electro-optical properties of polymer stabilized cholesteric liquid crystal film 2011 Chin. Phys. B 20 024212

[1] Yang D K, Doane J W, Yaniv Z and Glasser J 1994 Appl. Phys. Lett. 64 1905
[2] Yang D K, Huang X Y and Zhu Y M 1997 Ann. Rev. Mater. Sci. bf 27 117
[3] Huang Z 2010 Key Eng. Mater. 428--429 206
[4] Wang S, He J, Zeng Y, Yan B and Wang Y 2008 Front. Chem. Eng. China 2 265
[5] He J, Yan B, Yu B, Wang S, Wang X, Wang J, Zeng Y, Ran R and Wang Y 2008 J. Polym. Sci. Pol. Chem. 46 3140
[6] Ma J, Shi L and Yang D K 2010 Appl. Phys. Express 3 021702
[7] Kikuchi H, Yokota M, Hisakado Y, Yang H and Kajiyama T 2002 it Nature Mater. 1 64
[8] Choi S W, Yamamoto S I, Iwata T and Kikuchi H 2009 J. Phys. D: Appl. Phys. 42 112002
[9] Guo J, Sun J, Zhang L, Li K, Cao H, Yang H and Zhu S 2008 Polym. Adv. Technol. 19 1504
[10] Huang Z, Yang W and Wang J 2008 Front. Optoelectron. China bf 1 188
[11] Zheng Z, Song J, Zhang L, Liu Y, Guo F, Ma J, Li W, Deng S and Xuan L 2008 Chin. Phys. B 17 3227
[12] Zheng Z, Ma J, Li W, Song J, Liu Y and Xuan L 2008 Liq. Cryst. 35 885
[13] Huang C Y, Chih Y S and Ke S W 2007 Appl. Phys. B 86 123
[14] Yang D K and Wu S T 2006 Fundamentals of Liquid Crystal Devices (New York: John Wiley & Sons Inc)
[15] Fung Y K, Yang D K, Ying S, Chien L C, Zumer S and Doane J W 1995 Liq. Cryst. 19 797
[16] Jang W G, Sun R, Twieg R J and Yang D K 2000 J. Soc. Inf. Display 8 73
[17] Yang D K, Chien L C and Doane J W 1992 Appl. Phys. Lett. bf 60 3102
[18] Liang X, Cao H, Pan G, Cui X, Li F, Niu G, Zhang D, Yang Z, Yang H and Zhu S 2009 Liq. Cryst. 36 93
[19] Yang D K 2008 Journal of SID 16 117
[20] Ma R Q and Yang D K 2000 Phys. Rev. E 61 1567
[21] Sun R, Jang W and Yang D K 1999 SID'99 Digest 652
[1] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[2] Thermodynamically consistent model for diblock copolymer melts coupled with an electric field
Xiaowen Shen(沈晓文) and Qi Wang(王奇). Chin. Phys. B, 2022, 31(4): 048201.
[3] Donor-acceptor conjugated copolymer with high thermoelectric performance: A case study of the oxidation process within chemical doping
Liangjun Chen(陈凉君), Wei Wang(王维), Shengqiang Xiao(肖生强), and Xinfeng Tang(唐新峰). Chin. Phys. B, 2022, 31(2): 028507.
[4] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[5] Structure design for high performance n-type polymer thermoelectric materials
Qi Zhang(张奇), Hengda Sun(孙恒达), and Meifang Zhu(朱美芳). Chin. Phys. B, 2022, 31(2): 028506.
[6] Solid-to-molecular-orientational-hexatic melting induced by local environment determined defect proliferations
Zhanglin Hou(侯章林), Jieli Wang(王杰利), Ying Zeng(曾颖), Zhiyuan Zhao(赵志远), Xing Huang(黄兴), Kun Zhao(赵坤), and Fangfu Ye(叶方富). Chin. Phys. B, 2022, 31(12): 126401.
[7] A minimal model for the auxetic response of liquid crystal elastomers
Bingyu Yu(於冰宇), Yuanchenxi Gao(高袁晨曦), Bin Zheng(郑斌), Fanlong Meng(孟凡龙), Yu Fang(方羽), Fangfu Ye(叶方富), and Zhongcan Ouyang(欧阳钟灿). Chin. Phys. B, 2022, 31(10): 104601.
[8] Variational approximation methods for long-range force transmission in biopolymer gels
Haiqin Wang(王海钦), and Xinpeng Xu(徐新鹏). Chin. Phys. B, 2022, 31(10): 104602.
[9] Influences of nanoparticles and chain length on thermodynamic and electrical behavior of fluorine liquid crystals
Ines Ben Amor, Lotfi Saadaoui, Abdulaziz N. Alharbi, Talal M. Althagafi, and Taoufik Soltani. Chin. Phys. B, 2022, 31(10): 104202.
[10] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[11] Stability of liquid crystal systems doped with γ-Fe2O3 nanoparticles
Xu Zhang(张旭), Ningning Liu(刘宁宁), Zongyuan Tang(唐宗元), Yingning Miao(缪应宁), Xiangshen Meng(孟祥申), Zhenghong He(何正红), Jian Li(李建), Minglei Cai(蔡明雷), Tongzhou Zhao(赵桐州), Changyong Yang(杨长勇), Hongyu Xing(邢红玉), and Wenjiang Ye(叶文江). Chin. Phys. B, 2021, 30(9): 096101.
[12] Phase transition of asymmetric diblock copolymer induced by nanorods of different properties
Yu-Qi Guo(郭宇琦). Chin. Phys. B, 2021, 30(4): 048301.
[13] Design and optimization of nano-antenna for thermal ablation of liver cancer cells
Mohammad Javad Rabienejhad, Azardokht Mazaheri, and Mahdi Davoudi-Darareh. Chin. Phys. B, 2021, 30(4): 048401.
[14] Glassy dynamics of model colloidal polymers: Effect of controlled chain stiffness
Jian Li(李健), Bo-kai Zhang(张博凯), and Yu-Shan Li(李玉山). Chin. Phys. B, 2021, 30(3): 036104.
[15] Driven injection of a polymer into a spherical cavity: A Langevin dynamics simulation study
Chao Wang(王超), Fan Wu(吴凡), Xiao Yang(杨肖), Ying-Cai Chen(陈英才), and Meng-Bo Luo(罗孟波). Chin. Phys. B, 2021, 30(10): 108202.
No Suggested Reading articles found!