Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127501    DOI: 10.1088/1674-1056/20/12/127501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Synthesis of ZnFe2O4 nanomagnets by Fe-ion implantation into ZnO and post-annealing

Pan Feng(潘峰)a)b), Guo Ying(郭颖) b), Cheng Feng-Feng(成枫锋)a), Fa Tao(法涛)a), and Yao Shu-De(姚淑德) a)†
a State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China; b Department of Physics, Shaanxi University of Technology, Hanzhong 723001, China
Abstract  Fe ions of dose 8 × 1016 cm-2 are implanted into a ZnO single crystal at 180 keV. Annealing at 1073 K leads to the formation of zinc ferrite (ZnFe2O4), which is verified by synchrotron radiation X-ray diffraction (SR-XRD) and X-ray photoelectron spectroscopy (XPS). The crystallographically oriented ZnFe2O4 is formed inside the ZnO with the orientation relationship of ZnFe2O4 (111)//ZnO (0001). Superconducting quantum interference device (SQUID) measurements show that the as-implanted and post-annealing samples are both ferromagnetic at 5 K. The synthesized ZnFe2O4 is superparamagnetic, with a blocking temperature (TB = 25 K), indicated by zero field cooling and field cooling (ZFC/FC) measurements.
Keywords:  Fe implanted      ZnO      ZnFe2O4      superparamagnetic  
Received:  10 July 2011      Revised:  28 July 2011      Accepted manuscript online: 
PACS:  75.50.Pp (Magnetic semiconductors)  
  61.72.uj (III-V and II-VI semiconductors)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB832904), the National Natural Science Foundation of China (Grant Nos. 10875007 and 11005005), and the Research Fund of Shaanxi University of Technology, China (Grant No. SLQ0815).

Cite this article: 

Pan Feng(潘峰), Guo Ying(郭颖), Cheng Feng-Feng(成枫锋), Fa Tao(法涛), and Yao Shu-De(姚淑德) Synthesis of ZnFe2O4 nanomagnets by Fe-ion implantation into ZnO and post-annealing 2011 Chin. Phys. B 20 127501

[1] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[2] Liu S H, Hsu H S, Venkataiah G, Qi X, Lin C R, Lee J F, Liang K S and Huang J C A 2010 Appl. Phys. Lett. 96 262504
[3] Lu Z L, Zou W Q, Xu M X and Zhang F M 2010 Chin. Phys. B 19 056101
[4] Cheng X W, Li X, Gao Y L, Yu Z, Long X and Liu Y 2009 Acta Phys. Sin. 58 2018 (in Chinese)
[5] Wang D, Chen Z Q, Zhou F, Lu W, Maekawa M and Kawasuso A 2009 Appl. Surf. Sci. 255 9371
[6] Li M, Zou C W, Wang G F, Wang H J, Yin M L, Liu C S, Guo L P, Fu D J and Kang T W 2010 J. Appl. Phys. 107 104117
[7] Liu X J, Zhu X Y, Song C, Zeng F and Pan F 2009 J. Phys. D: Appl. Phys. 42 035004
[8] Yin S, Xu M X, Yang L, Liu J F, Rösner H, Hahn H, Gleiter H, Schild D, Doyle S, Liu T, Hu T D, Takayama-Muromachi E and Jiang J Z 2006 Phys. Rev. B 73 224408
[9] Jin Z W, Fukumura T, Kawasaki M, Ando K, Saito H, Sekiguchi T, Yoo Y Z, Murakami M, Matsumoto Y, Hasegawa T and Koinuma H 2001 Appl. Phys. Lett. 78 3824
[10] Liu X C, Shi E W, Song L X, Zhang H W and Chen Z Z 2006 Acta Phys. Sin. 55 2557 (in Chinese)
[11] Xu Q Y, Zheng X H and Gong Y P 2010 Chin. Phys. B 19 077501
[12] Zhou S, Potzger K, Talut G, Reuther H, von Borany J, Grötzschel R, Skorupa W, Helm M, Fassbender J, Volbers N, Lorenz M and Herrmannsdörfer T 2008 J. Appl. Phys. 103 023902
[13] Norton D P, Overberg M E, Pearton S J, Pruessner K, Budai J D, Boatner L A, Chisholm M F, Lee J S, Khim Z G, Park Y D and Wilson R G 2003 Appl. Phys. Lett. 83 5488
[14] Zhou S, Potzger K, Zhang G F, Eichhorn F, Skorupa W, Helm M and Fassbender J 2006 J. Appl. Phys. 100 114304
[15] Zhou S, Potzger K, von Borany J, Grötzschel R, Skorupa W, Helm M and Fassbender J 2008 Phys. Rev. B 77 035209
[16] Zhou S, Potzger K, Talut G, von Borany J, Skorupa W, Helm M and Fassbender J 2008 J. Appl. Phys. 103 07D530
[17] Zhou S , Potzger K, Xu Q Y, Talut G, Lorenz M, Skorupa W, Helm M, Fassbender J, Grundmann M and Schmidt H 2009 Vacuum 83 S13
[18] Cullity B D 1978 Elements of X-ray Diffractions (MA: Addison-Wesley Reading) pp. 102-103
[19] Yao C W, Zeng Q S, Goya G F, Torres T, Liu J F, Wu H P, Ge M Y, Zeng Y W, Wang Y W and Jiang J Z 2007 J. Phys. Chem. C 111 12274
[20] Geurts J, Schumm M, Koerdel M, Ziereis C, Müller S, Ronning C, Dynowska E, Golacki Z and Szuszkiewicz W 2010 Phys. Status Solidi B 247 1469
[21] Bear S, Prince A A M, Velmurugan S, Raghavan P S, Gopalan R, Panneerselvam G and Narasimhan S V 2001 J. Mater. Sci. 36 5379
[22] Druska P, Steinike U and Sepelak V 1999 J. Solid State Chem. 146 13
[23] Tahir A A and Upul Wijayantha K G 2010 J. Photochem. Photobio. A: Chem. 216 119
[24] Tiwari S, Prakash R, Choudhary R J and Phase D M 2007 J. Phys. D: Appl. Phys. 40 4943
[25] Liu H, Jiang E Y, Zheng R K and Bai H L 2003 J. Phys.: Condens. Matter 15 8003
[26] Marco J F, Gancedo J R, Gracia M, Gautier J L, Rios E and Berry F J 2000 J. Solid State Chem. 153 74
[27] Tavares A C, da Silva Pereira M I, Mendoncca M H, Nunes M R, Costa F M and S'a C M 1998 J. Electroanal. Chem. 449 91
[28] Zhou Z H, Xue J M, Chan H S O and Wang J 2001 J. Appl. Phys. 90 4169
[29] Bohra M, Prasad S, Kumar N, Misra D S, Sahoo S C, Venkataramani N and Krishnan R 2006 Appl. Phys. Lett. 88 262506
[30] Shinagawa T, Izaki M, Inui H, Murase K and Awakura Y 2006 Chem. Mater. 18 763
[31] Zhou S, Potzger K, Reuther H, Talut G, Eichhorn F, von Borany J, Skorupa W, Helm M and Fassbender J 2007 J. Phys. D: Appl. Phys. 40 964
[32] Respaud M, Broto J M, Rakoto H, Fert A R, Thomas L, Barbara B, Verelst M, Snoeck E, Lecante P, Mosset A, Osuna J, Ould Ely T, Amiens C and Chaudret B 1998 Phys. Rev. B 57 2925
[33] Tsoi G M, Wenger L E, Senaratne U, Tackett R J, Buc E C, Naik R, Vaishnava P P and Naik V 2005 Phys. Rev. B 72 014445
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[3] Emerging of Ag particles on ZnO nanowire arrays for blue-ray hologram storage
Ning Li(李宁), Xin Li(李鑫), Ming-Yue Zhang(张明越), Jing-Ying Miao(苗景迎), Shen-Cheng Fu(付申成), and Xin-Tong Zhang(张昕彤). Chin. Phys. B, 2022, 31(3): 036101.
[4] Boosting the performance of crossed ZnO microwire UV photodetector by mechanical contact homo-interface barrier
Yinzhe Liu(刘寅哲), Kewei Liu(刘可为), Jialin Yang(杨佳霖), Zhen Cheng(程祯), Dongyang Han(韩冬阳), Qiu Ai(艾秋), Xing Chen(陈星), Yongxue Zhu(朱勇学), Binghui Li(李炳辉), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2022, 31(10): 106101.
[5] Three-dimensional vertical ZnO transistors with suspended top electrodes fabricated by focused ion beam technology
Chi Sun(孙驰), Linyuan Zhao(赵林媛), Tingting Hao(郝婷婷), Renrong Liang(梁仁荣), Haitao Ye(叶海涛), Junjie Li(李俊杰), and Changzhi Gu(顾长志). Chin. Phys. B, 2022, 31(1): 016801.
[6] Analysis of properties of krypton ion-implanted Zn-polar ZnO thin films
Qing-Fen Jiang(姜清芬), Jie Lian(连洁), Min-Ju Ying(英敏菊), Ming-Yang Wei(魏铭洋), Chen-Lin Wang(王宸琳), and Yu Zhang(张裕). Chin. Phys. B, 2021, 30(9): 097801.
[7] Effect of surface oxygen vacancy defects on the performance of ZnO quantum dots ultraviolet photodetector
Hongyu Ma(马宏宇), Kewei Liu(刘可为), Zhen Cheng(程祯), Zhiyao Zheng(郑智遥), Yinzhe Liu(刘寅哲), Peixuan Zhang(张培宣), Xing Chen(陈星), Deming Liu(刘德明), Lei Liu(刘雷), and Dezhen Shen(申德振). Chin. Phys. B, 2021, 30(8): 087303.
[8] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[9] In-situ fabrication of ZnO nanoparticles sensors based on gas-sensing electrode for ppb-level H2S detection at room temperature
Jing-Yue Xuan(宣景悦), Guo-Dong Zhao(赵国栋), Xiao-Bo Shi(史小波), Wei Geng(耿伟), Heng-Zheng Li(李恒征), Mei-Ling Sun(孙美玲), Fu-Chao Jia(贾福超), Shu-Gang Tan(谭树刚), Guang-Chao Yin(尹广超), and Bo Liu(刘波). Chin. Phys. B, 2021, 30(2): 020701.
[10] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[11] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[12] Structural and optical characteristic features of RF sputtered CdS/ZnO thin films
Ateyyah M Al-Baradi, Fatimah A Altowairqi, A A Atta, Ali Badawi, Saud A Algarni, Abdulraheem S A Almalki, A M Hassanien, A Alodhayb, A M Kamal, M M El-Nahass. Chin. Phys. B, 2020, 29(8): 080702.
[13] Performance of beam-type piezoelectric vibration energy harvester based on ZnO film fabrication and improved energy harvesting circuit
Shan Gao(高珊), Chong-Yang Zhang(张重扬), Hong-Rui Ao(敖宏瑞), Hong-Yuan Jiang(姜洪源). Chin. Phys. B, 2020, 29(8): 088401.
[14] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[15] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
No Suggested Reading articles found!