Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127301    DOI: 10.1088/1674-1056/20/12/127301

The binding energy of a hydrogenic impurity in self-assembled double quantum dots

Zhang Hong(张红)a)†, Wang Xue(王学)a), Zhao Jian-Feng(赵剑锋)a), and Liu Jian-Jun(刘建军)b)
a College of Science, Hebei University of Engineering, Handan 056038, China; b College of Physical Science and Information Engineering, Hebei Normal University, Shijiazhuang 050016, China
Abstract  The binding energy of a hydrogenic impurity in self-assembled double quantum dots is calculated via the finite-difference method. The variation in binding energy with donor position, structure parameters and external magnetic field is studied in detail. The results found are: (i) the binding energy has a complex behaviour due to coupling between the two dots; (ii) the binding energy is much larger when the donor is placed in the centre of one dot than in other positions; and (iii) the external magnetic field has different effects on the binding energy for different quantum-dot sizes or lateral confinements.
Keywords:  hydrogenic impurity      double quantum dots      binding energy      magnetic field  
Received:  23 May 2011      Revised:  29 August 2011      Accepted manuscript online: 
PACS:  73.20.Hb (Impurity and defect levels; energy states of adsorbed species)  
  73.21.La (Quantum dots)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674040), the Natural Science Foundation of Hebei Province of China (Grant No. A2011205092), and the Scientific and Technological Research and Development Projects of Handan City (Grant No. 1128120063-3).

Cite this article: 

Zhang Hong(张红), Wang Xue(王学), Zhao Jian-Feng(赵剑锋), and Liu Jian-Jun(刘建军) The binding energy of a hydrogenic impurity in self-assembled double quantum dots 2011 Chin. Phys. B 20 127301

[1] Granados D and Garcia J M 2003 Appl. Phys. Lett. 82 2401
[2] Raz T, Ritter D and Bahi G. 2003 Appl. Phys. Lett. 82 1706
[3] Huang S S, Niu Z C, Fang Z D, Ni H Q and Gong Z 2006 Appl. Phys. Lett. 89 031921
[4] Hashimoto T, Oshima R and Okada S Y 2007 J. Cryst. Growth 301-302 821
[5] Fuster D, Alen B, Gonzalez L, Gonzalez Y and Pastor J M 2007 J. Cryst. Growth 301-302 705
[6] Zhang M and Ban S L 2009 Chin. Phys. B 18 5437
[7] Mikhailov I D, Betancur F J, Escorcia R A and Sieera-Ortega J 2003 Phys. Rev. B 67 115317
[8] An X T and Liu J J 2006 J. Appl. Phys. 99 123713
[9] Brandi H S, Latgé A and Oliveira L E 2004 Phys. Rev. B 70 153303
[10] Zhang M and Ban S L 2009 Chin. Phys. B 18 4449
[11] Park G, Shchechin O B, Huffaher D L and Deppe D G 2000 Appl. Phys. Lett. 73 3351
[12] Li S S and Xia J B 2006 J. Appl. Phys. 100 083714
[13] Li S S and Xia J B 2007 J. Appl. Phys. 101 093716
[14] Perez-Merchancano S T, Paredes-Gutierrez H and Silva-Valencia J 2007 J. Phys.: Condens. Matter 19 026225
[15] Qu F Y, Fonseca A L A and Nunes O A C 1997 J. Appl. Phys. 82 1236
[16] Liu J J, Shen M and Wang S W 2007 J. Appl. Phys. 101 073703.
[17] Wang X F 2007 Phys. Lett. A 364 66
[18] Szafran B, Bednarek S and Adamowski J 2001 Phys. Rev. B 64 125301
[19] Szafran B, Bednarek S, Chwiej T and Adamowski J 2003 Phys. Rev. B 68 045328
[1] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[2] Influence of magnetic field on power deposition in high magnetic field helicon experiment
Yan Zhou(周岩), Peiyu Ji(季佩宇), Maoyang Li(李茂洋), Lanjian Zhuge(诸葛兰剑), and Xuemei Wu(吴雪梅). Chin. Phys. B, 2023, 32(2): 025205.
[3] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Coupled flow and heat transfer of power-law nanofluids on non-isothermal rough rotary disk subjected to magnetic field
Yun-Xian Pei(裴云仙), Xue-Lan Zhang(张雪岚), Lian-Cun Zheng(郑连存), and Xin-Zi Wang(王鑫子). Chin. Phys. B, 2022, 31(6): 064402.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Nonlinear oscillation characteristics of magnetic microbubbles under acoustic and magnetic fields
Lixia Zhao(赵丽霞), Huimin Shi(史慧敏), Isaac Bello, Jing Hu(胡静), Chenghui Wang(王成会), and Runyang Mo(莫润阳). Chin. Phys. B, 2022, 31(3): 034302.
[8] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[9] Phase- and spin-dependent manipulation of leakage of Majorana mode into double quantum dot
Fu-Bin Yang(羊富彬), Gan Ren(任淦), and Lin-Guo Xie(谢林果). Chin. Phys. B, 2021, 30(7): 078505.
[10] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[11] A modified analytical model of the alkali-metal atomic magnetometer employing longitudinal carrier field
Chang Chen(陈畅), Yi Zhang(张燚), Zhi-Guo Wang(汪之国), Qi-Yuan Jiang(江奇渊), Hui Luo(罗晖), and Kai-Yong Yang(杨开勇). Chin. Phys. B, 2021, 30(5): 050707.
[12] Electron transfer properties of double quantum dot system in a fluctuating environment
Lujing Jiang(姜露静), Kang Lan(蓝康), Zhenyu Lin(林振宇), and Yanhui Zhang(张延惠). Chin. Phys. B, 2021, 30(4): 040307.
[13] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[14] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[15] Exploration of magnetic field generation of H32+ by direc ionization and coherent resonant excitation
Zhi-Jie Yang(杨志杰), Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2021, 30(12): 123203.
No Suggested Reading articles found!