|
|
Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients |
Zhang Yi(张翼)†, Wei Wei-Wei(魏薇薇), Cheng Teng-Fei(程腾飞), and Song Yang(宋洋) |
Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China |
|
|
Abstract In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived.
|
Received: 13 April 2011
Revised: 17 May 2011
Accepted manuscript online:
|
PACS:
|
02.30.Ik
|
(Integrable systems)
|
|
05.45.Yv
|
(Solitons)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10831003) and the Natural Science Foundation
of Zhejiang Province, China (Grant Nos. Y6100791 and R6090109). |
Cite this article:
Zhang Yi(张翼), Wei Wei-Wei(魏薇薇), Cheng Teng-Fei(程腾飞), and Song Yang(宋洋) Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients 2011 Chin. Phys. B 20 110204
|
[1] |
Yan Z Y and Zhang H Q 2001 J. Phys. A bf34 1785
|
[2] |
Tian B and Gao Y T 2005 Phys. Lett. A bf340 243
|
[3] |
Gao Y T and Tian B 2006 Phys. Lett. A bf349 314
|
[4] |
Ye L Y, Lv Y N, Zhang Y and Jin H P 2008 Chin. Phys. Lett. 25 357
|
[5] |
Wang H and Li B 2011 Chin. Phys. B 20 040203
|
[6] |
Serkin V N and Hasegawa A 2000 Phys. Rev. Lett. 85 4502
|
[7] |
Kruglov V I, Peacock A C and Harvey J D 2005 Phys. Rev. E 71 056619
|
[8] |
Serkin V, Matsumoto M and Belyaeva T 2001 Opt. Comm. bf196 159
|
[9] |
Biswas A 2003 J. Nonl. Opt. Phys. Mat. 12 17
|
[10] |
Zamir M 2000 The Physics of Pulsatile Flow (New York: Springer-Verlag)
|
[11] |
Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. bf71 463 bibiteml2 Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
|
[13] |
Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605
|
[14] |
Dai H H and Huo Y 2002 Wave Motion 35 55
|
[15] |
Chan W L and Li K S 1989 J. Math. Phys. 30 1614
|
[16] |
Hirota R 1979 J. Phys. Soc. Jpn. 46 1681
|
[17] |
Chan W L, Li K S and Li Y S 1992 J. Math. Phys. 33 3759
|
[18] |
Lou S Y and Ruan H Y 1992 Acta Phys. Sin. 41 182 (in Chinese)
|
[19] |
Tian B, San W R, Zhang C Y, Wei G M and Gao Y T 2005 Eur. Phys. J. B 47 329
|
[20] |
Wei G M, Gao Y T, Hu W and Zhang C Y 2006 Eur. Phys. J. B 53 343
|
[21] |
Zhang C Y, Gao Y T, Meng X H, Li J, Xu T, Wei G M and Zhu H W 2006 J. Phys. A 39 1453
|
[22] |
Gao Y T and Tian B 2003 Phys. Plasmas 10 4306
|
[23] |
Hirota R and Satsuma J 1977 Prog. Theor. Phys. 57 797
|
[24] |
Hirota R 2004 Direct Methods in Soliton Theory (Berlin: Springer-Verlag)
|
[25] |
Gilson C, Lambert F, Nimmo J and Willox R 1996 Proc. R. Soc. Lond. A 452 223
|
[26] |
Lambert F, Loris I and Springael J 2001 Inverse Probl. 17 1067
|
[27] |
Lambert F and Springael J 2008 Acta Appl. Math. 102 147
|
[28] |
Fan E G 2011 Phys. Lett. A 375 493
|
[29] |
Bell E T 1934 Ann. Math. 35 258
|
[30] |
Steeb W H and Euler N 1988 Int. J. Mod. Phys. A 7 1669
|
[31] |
Hereman W and Zhuang W 1995 Acta Appl. Math. 39 361
|
[32] |
Elwakil S A, El-labany S K, Zahran M A and Sabry R 2004 Chaos Soliton. Fract. 19 1083
|
[33] |
Yomba E 2004 Chaos Soliton. Fract. 21 75
|
[34] |
Zhao H and Bai C L 2006 Chaos Soliton. Fract. 30 217
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|