Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(10): 100202    DOI: 10.1088/1674-1056/26/10/100202
GENERAL Prev   Next  

Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity

Jia-Xiang Cai(蔡加祥)1, Qi Hong(洪旗)2, Bin Yang(杨斌)1
1. School of Mathematical Science, Huaiyin Normal University, Huaian 223300, China;
2. Graduate School of China Academy of Engineering Physics, Beijing 100083, China
Abstract  Local structure-preserving algorithms including multi-symplectic, local energy-and momentum-preserving schemes are proposed for the generalized Rosenau-RLW-KdV equation based on the multi-symplectic Hamiltonian formula of the equation. Each of the present algorithms holds a discrete conservation law in any time-space region. For the original problem subjected to appropriate boundary conditions, these algorithms will be globally conservative. Discrete fast Fourier transform makes a significant improvement to the computational efficiency of schemes. Numerical results show that the proposed algorithms have satisfactory performance in providing an accurate solution and preserving the discrete invariants.
Keywords:  Rosenau-type equation      multi-symplectic conservation law      energy conservation law      structure-preserving algorithm  
Received:  08 April 2017      Revised:  13 June 2017      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  02.70.Jn (Collocation methods)  
  02.70.Hm (Spectral methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11201169 and 61672013) and the Foundation of Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems (Grant No. 201606).
Corresponding Authors:  Jia-Xiang Cai     E-mail:  cjx1981@hytc.edu.cn

Cite this article: 

Jia-Xiang Cai(蔡加祥), Qi Hong(洪旗), Bin Yang(杨斌) Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity 2017 Chin. Phys. B 26 100202

[1] Ascher U M and Mclachlan R I 2004 Appl. Numer. Math. 48 255
[2] Cai J X, Gong Y Z and Liang H 2017 J. Math. Anal. Appl. 447 17
[3] Rosenau P 1988 Prog. Theor. Phys. 79 1028
[4] Mittal R C and Jain R K 2012 Commun. Numer. Anal. 2012 16
[5] Zuo J M, Zhang Y M, Zhang T D and Chang F 2010 Boundary Value Prob. 201013
[6] Pan X and Zhang L 2012 Math. Prob. Eng. 201215
[7] Hu J, Xu Y and Hu B 2013 Adv. Math. Phys. 2013 7
[8] Wongsaijai B and Poochinapan B K 2014 Appl. Math. Comput. 245 289
[9] Cai W J, Sun Y J and Wang Y S 2015 Appl. Math. Comput. 271 860
[10] Cui J C, Liao C C, Liu S X and Mei F X 2017 Acta Phys. Sin. 66 040201(in Chinese)
[11] Cai J X, Hong J L, Wang Y S and Gong Y Z 2015 SIAM J. Numer. Anal. 53 1918
[12] Cai J X, Bai C Z and Qin Z L 2015 Chin. Phys. B 24 100203
[13] Li X, Qian X, Tang L Y and Song S H 2017 Chin. Phys. Lett. 34 060202
[14] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[15] Kong L H, Hong J L and Zhang J J 2013 Commun. Comput. Phys. 14 219
[16] Cai J X, Wang Y S and Gong Y Z 2016 J. Sci. Comput. 66 141
[17] Zhang H, Song S H, Zhou W E and Chen X D 2014 Chin. Phys. B 23 080204
[18] Liao C C, Cui J C, Liang J Z and Ding X H 2016 Chin. Phys. B 25 010205
[19] Mclachlan R I, Ryland B N and Sun Y J 2014 SIAM J. Sci. Comput. 36 A2199
[20] Quispel G R W and McLaren D I 2008 J. Phys. A:Math. Theor. 41 045206
[1] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[2] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[3] Structure-preserving algorithms for the Duffing equation
Gang Tie-Qiang(冮铁强), Mei Feng-Xiang(梅凤翔), and Xie Jia-Fang(解加芳). Chin. Phys. B, 2008, 17(10): 3623-3628.
No Suggested Reading articles found!