Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 105201    DOI: 10.1088/1674-1056/20/10/105201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Load optimal design for a primary test stand facility based on a zero-dimensional load model

Zhao Hai-Long(赵海龙)$†$, Deng Jian-Jun(邓建军),Wang Gang-Hua(王刚华), and Zou Wen-Kang(邹文康)
Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, China
Abstract  In order to couple the numerical simulation of a primary test stand driver with an optimal load design, a zero-dimensional wire array load model is designed based on the Saturn load model using PSPICE, which is an upgraded version of the Simulation Program with Integrated Circuit Emphasis (SPICE) designed by the ORCAD Corporation to perform circuit simulations. This paper calculates different load parameters and discusses factors influencing the driving current curve. With appropriate driving current curves chosen, further magneto-hydrodynamic calculations are carried out and discussed to provide the best results for experiments. The suggested optimal load parameters play an important role in experimental load design.
Keywords:  Z pinch simulation      wire array load optimal design      load model  
Received:  23 July 2010      Revised:  18 April 2011      Accepted manuscript online: 
PACS:  52.65.-y (Plasma simulation)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  

Cite this article: 

Zhao Hai-Long(赵海龙)$†$, Deng Jian-Jun(邓建军),Wang Gang-Hua(王刚华), and Zou Wen-Kang(邹文康) Load optimal design for a primary test stand facility based on a zero-dimensional load model 2011 Chin. Phys. B 20 105201

[1] Deeney C, Douglas M R, Spielman R B, Nash T J, Peterson D L, L'Eplattenier P, Chandler G A, Seamen J F and Struve K W 1997 Phys. Rev. Lett. 81 4883
[2] Spielman R B, Deeney C, Chandler G A, Douglas M R, Fehl D L, Matzen M K, McDaniel D H, Nash T J, Porter J L, Sanford T W L, Seaman J F, Stygar W A, Struve K W, Breeze S P, McGurn J S, Torres J A, Zagar D M, Gilliland T L, Jobe D O, Mckenney J L, Mock R C, Vargas M, Wagoner T and Peterson D L 1998 Phys. Plasmas 5 2105
[3] Cuneo M E, Waisman E M, Lebedev S V, Chittenden J P, Stygar W A, Chandler G A, Vesey R A, Yu E P, Nash T J, Bliss D E, Sarkisov G S, Wagoner T C, Bennett G R, Sinars D B, Porter J L, Simpson W W, Ruggles L E, Wenger D F, Garasi C J, Oliver B V, Aragon R A, Fowler W E, Hettrick M C, Idzorek G C, Johnson D, Keller K, Lazier S E, McGurn J S, Mehlhorn T A, Moore T, Nielsen D S, Pyle J, Speas S, Struve K W and Torres J A 2005 Phys. Rev. E 71 046406
[4] Katzenstein J 1981 J. Appl. Phys. 52 676
[5] Velikovich A L, Davis J, Thornhill J W, Giuliani J L, Rudakov L I and Deeney C 2000 Phys. Plasmas 7 3265
[6] Xiao D L, Ning C, Lan K and Ding N 2009 Acta Phys. Sin. 58 430 (in Chinese)
[7] Huang J, Sun S K, Xiao D L, Ding N, Ning C, Zhang Y and Xue C 2010 Acta Phys. Sin. 59 6351 (in Chinese)
[8] Wang L P, Qiu A C, Kuai B, Cong P T, Liang T X, Zhang Z, Jia W and Guo N 2004 High Power Laser and Particle Beams 16 261 (in Chinese)
[9] Ning C, Ding N and Yang Z H 2007 Acta Phys. Sin. 56 338 (in Chinese)
[10] Qiu A C, Kuai B, Wang L P, Wu G and Cong P T 2008 High Power Laser and Particle Beams 20 1911 (in Chinese)
[11] Wu G, Qiu A C, Lü M, Kuai B, Wang L P, Cong P T, Qiu M T, Lei T S, Sun T P, Guo N, Han J J, Zhang X J, Huang T, Zhang G W and Qiao K L 2009 Acta Phys. Sin. 58 4779 (in Chinese)
[12] Xie W P, Wang W D, Deng J J, Ying C T and Ding B N 2003 High Power Laser and Particle Beams 15 25 (in Chinese)
[13] Huang X B, Lin L B, Yang L B, Deng J J, Gu Y C, Ye S C, Yue Z P, Zhou S T, Li F P and Zhang S Q 2005 High Power Laser and Particle Beams 17 793 (in Chinese)
[14] Ding N, Zhang Y, Ning C, Shu X J and Xiao D L 2008 Acta Phys. Sin. 57 3027 (in Chinese)
[15] Struve K W, Martin T H, Spielman R B, Stygar W A, Corcoran P A and Douglas J W 1997 IEEE Conference Record: Abstracts (IEEE Pulsed Power and Plasma Conference), 1997, 29 June-2 July, Baltimore, USA p. 162
[16] Corcoran P A, Douglas J W, Smith I D, Spence P W, Stygar W A, Struve K W, Martin T H, Spielman R B and Ives H C 1997 IEEE Conference Record: Abstracts (IEEE Pulsed Power and Plasma Conference), 1997, 29 June-2 July, Baltimore, USA p. 466
[17] Sanford T W L, Humphreys D R, Poukey J W, Marder B M, Halbleib J A, Crow J T, Spielman R B and Mock R C 1994 Sandia National Laboratories Report SAND8921315
[18] Haines M G 1998 IEEE Trans. Plasma Sci. 26 1275
[1] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[2] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[3] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[4] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[5] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[6] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[7] Landau damping of electrons with bouncing motion in a radio-frequency plasma
Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒). Chin. Phys. B, 2021, 30(12): 125202.
[8] Effect of pulse duration on generation of attosecond pulse with coherent wake emission
Siyu Chen(陈思宇), Zhinan Zeng(曾志男), and Ruxin Li(李儒新). Chin. Phys. B, 2021, 30(11): 114206.
[9] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[10] Multibeam Raman amplification of a finite-duration seed in a short distance
Y G Chen(陈雨谷), Y Chen(陈勇), S X Xie(谢善秀), N Peng(彭娜), J Q Yu(余金清), and C Z Xiao(肖成卓). Chin. Phys. B, 2021, 30(10): 105202.
[11] Plasma characteristics and broadband electromagnetic wave absorption in argon and helium capacitively coupled plasma
Wen-Chong Ouyang(欧阳文冲), Qi Liu(刘琦), Tao Jin(金涛), and Zheng-Wei Wu(吴征威). Chin. Phys. B, 2021, 30(9): 095203.
[12] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[13] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[14] Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
Ying-Jie Wang(王英杰), Jia-Wei Huang(黄佳伟), Quan-Zhi Zhang(张权治), Yu-Ru Zhang(张钰如), Fei Gao(高飞), and You-Nian Wang(王友年). Chin. Phys. B, 2021, 30(9): 095205.
[15] Numerical simulation and experimental validation of multiphysics field coupling mechanisms for a high power ICP wind tunnel
Ming-Hao Yu(喻明浩), Zhe Wang(王哲), Ze-Yang Qiu(邱泽洋), Bo Lv(吕博), and Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2021, 30(6): 065201.
No Suggested Reading articles found!