PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Landau damping of electrons with bouncing motion in a radio-frequency plasma |
Jun Tao(陶军)1,2, Nong Xiang(项农)1,†, Yemin Hu(胡业民)1,‡, and Yueheng Huang(黄跃恒)3,4 |
1 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; 2 University of Science and Technology of China, Hefei 230026, China; 3 Advanced Energy Research Center, Shenzhen University, Shenzhen 518060, China; 4 Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China |
|
|
Abstract One-dimensional particle simulations have been conducted to study the interaction between a radio-frequency electrostatic wave and electrons with bouncing motion. It is shown that bounce resonance heating can occur at the first few harmonics of the bounce frequency (nωb,n=1,2,3,...). In the parameter regimes in which bounce resonance overlaps with Landau resonance, the higher harmonic bounce resonance may accelerate electrons at the velocity much lower than the wave phase velocity to Landau resonance region, enhancing Landau damping of the wave. Meanwhile, Landau resonance can increase the number of electrons in the lower harmonic bounce resonance region. Thus electrons can be efficiently heated. The result might be applicable for collisionless electron heating in low-temperature plasma discharges.
|
Received: 14 May 2021
Revised: 02 July 2021
Accepted manuscript online: 22 July 2021
|
PACS:
|
52.50.Qt
|
(Plasma heating by radio-frequency fields; ICR, ICP, helicons)
|
|
52.40.-w
|
(Plasma interactions (nonlaser))
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE0300406) and the National Natural Science Foundation of China (Grant Nos. 11975272, 12075276, 11805133, 11705236, and 11375234). |
Corresponding Authors:
Nong Xiang, Yemin Hu
E-mail: xiangn@ipp.ac.cn;yeminhu@ipp.ac.cn
|
Cite this article:
Jun Tao(陶军), Nong Xiang(项农), Yemin Hu(胡业民), and Yueheng Huang(黄跃恒) Landau damping of electrons with bouncing motion in a radio-frequency plasma 2021 Chin. Phys. B 30 125202
|
[1] Piejak R B, Godyak V A and Alexandrovich B M 1992 Plasma Sources Sci. Technol. 1 179 [2] Raizer Y P, Shneider M N and Yatsenko N A 1995 Radio Frequency Capacitive Discharges (Boca Raton:CRC Press) [3] Vahedi V, Lieberman M A, Dipeso G, Rognlien T D and Hewett D 1995 J. Appl. Phys. 78 1446 [4] Godyak V A, Piejak R B, Alexandrovich B M and Kolobov V I 1998 Phys. Rev. Lett. 80 3264 [5] You S J, Chung C W and Chang H Y 2005 Appl. Phys. Lett. 87 041501 [6] Sun A, Becker M M and Loffhagen D 2016 Comput. Phys. Comm. 206 35 [7] Fu Y Y, Zheng B C, Wen D Q, Zhang P, Fan Q H and Verboncoeur J P 2020 Appl. Phys. Lett. 117 204101 [8] Vass M, Wilczek S, Lafleur T, Brinkmann R P, Donko Z and Schulze J 2020 Plasma Sources Sci. Technol. 29 085014 [9] Hopwood J, Guarnieri C R, Whitehair S J and Cuomo J J 1993 J. Vac. Sci. Technol. A 11 147 [10] Hopwood J, Guarnieri C R, Whitehair S J and Cuomo J J 1993 J. Vac. Sci. Technol. A 11 152 [11] Turner M M 1993 Phys. Rev. Lett. 71 1844 [12] Barnes M S, Forster J C and Keller J H 1993 Appl. Phys. lett. 62 2622 [13] Weibel E S 1967 Phys. Fluids 10 741 [14] Blevin H A, Reynolds J A and Thonemann P C 1970 Phys. Fluids 13 1259 [15] Godyak V A and Kolobov V I 1998 Phys. Rev. Lett. 81 369 [16] Turner M M 1996 Plasma Sources Sci. Technol. 5 159 [17] Turner M M 2009 J. Phys. D:Appl. Phys. 42 194008 [18] Shaing K C and Aydemir A Y 1997 Phys. Plasmas 4 3163 [19] Yoon N S, Kim S S, Chang C S and Choi D I 1996 Phys. Rev. E 54 757 [20] Kaganovich I D, Kolobov V I and Tsendin L D 1996 Appl. Phys. Lett. 69 3818 [21] Aliev Y M, Kaganovich I D and Schlüter H 1997 Phys. Plasmas 4 2413 [22] Chung C W, Kim S S, Seo S H, Chang H Y and Yoon N S 2000 J. Appl. Phys. 88 1181 [23] Chung C W, You K I, Seo S H, Kim S S and Chang H Y 2001 Phys. Plasmas 8 2992 [24] Kaganovich I D, Polomarov O V and Theodosiou C E 2004 Phys. Plasmas 11 2399 [25] Angus J R, Krasheninnikov S I and Smolyakov A I 2010 Phys. Plasmas 17 102115 [26] Shoucri M, Matte J P and Côté A 2003 J. Phys. D:Appl. Phys. 36 2083 [27] Park G Y, You S J, Iza F and Lee J K 2007 Phys. Rev. Lett. 98 085003 [28] Park G Y and Lee J K 2008 J. Phys. D:Appl. Phys. 41 022004 [29] Liu Y X, Zhang Q Z, Jiang W, Hou L J, Jiang X Z, Lu W Q and Wang Y N 2011 Phys. Rev. Lett. 107 055002 [30] Gu S, Kang H J, Kwon D C, Kim Y S, Chang Y M and Chuang C W 2016 Phys. Plasmas 23 063506 [31] Xu L, Cheng L, Funk M, Ranjan A, Hummel M, Bravenec R, Sundararajan R, Economou D J and Donnelly V M 2008 Appl. Phys. lett. 93 261502 [32] Koepke M, Ellis R F, Majeski R P and McCarrick M J 1986 Phys. Rev. Lett. 56 1256 [33] Hojo H and Hatori T 1993 J. Phys. Soc. Jpn 62 2212 [34] Zhang H s and Lin Z 2010 Phys. Plasmas 17 072502 [35] Elfimov A G, Galvao R M O, Sgalla R J F and Smolyakov A I 2012 39th EPS Conference on Plasma Physics, 2-6 July 2012, Stcckholm, Sweden [36] Fu Y Y, Zheng B C, Wen D Q, Zhang P, Fan Q H and Verboncoeur J P 2020 Plasma Sources Sci. Technol. 29 09LT01 [37] Giruzzi G, Artaud J F, Dumont R J, Imbeaux F, Bibet P, Bergerby G, Bouquey F, Clary J, Darbot C, Ekedahl A, Hoang G T, Lennholm M, Maget P, Magne R, Segui J L, Bruschi A and Granucci G 2004 Phys. Rev. Lett. 93 255002 [38] Yang Y L, Xiang N and Hu Y M 2017 Phys. Plasmas 24 082503 [39] Zhai X M, Chen J L, Xiang N, Bonoli P T and Shiraiwa S 2019 Phys. Plasmas 26 052509 [40] Anderegg F, Affolter M, Kabantsev A A, Dubin D H E, Ashourvan A and Driscoll C F 2016 Phys. Plasmas 23 055706 [41] Chen L J, Maldonado A, Bortnik J, Thorne M, Li J X, Dai L and Zhan X Y 2015 J. Geophys. Res. 120 6514 [42] Oneil T M 1965 Phys. Plasmas 8 2255 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|