PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma |
Aynisa Tursun(阿依妮萨·图尔荪)1, Mamat Ali Bake(买买提艾力·巴克)1,†, Baisong Xie(谢柏松)2,‡, Yasheng Niyazi(亚生·尼亚孜)3, and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提)1 |
1 School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China; 2 Key Laboratory of Beam Technology of the Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China; 3 Institute of Physics and Electrical Engineering, Kashi University, Kashgar 844009, China |
|
|
Abstract An efficient scheme for generating ultrabright γ-rays from the interaction of an intense laser pulse with a near-critical-density plasma is studied by using the two-dimensional particle-in-cell simulation including quantum electrodynamic effects. We investigate the effects of target shape on γ-ray generation efficiency using three configurations of the solid foils attached behind the near-critical-density plasma: a flat foil without a channel (target 1), a flat foil with a channel (target 2), and a convex foil with a channel (target 3). When an intense laser propagates in a near-critical-density plasma, a large number of electrons are trapped and accelerated to GeV energy, and emit γ-rays via nonlinear betatron oscillation in the first stage. In the second stage, the accelerated electrons collide with the laser pulse reflected from the foil and emit high-energy, high-density γ-rays via nonlinear Compton scattering. The simulation results show that compared with the other two targets, target 3 affords better focusing of the laser field and electrons, which decreases the divergence angle of γ-photons. Consequently, denser and brighter γ-rays are emitted when target 3 is used. Specifically, a dense γ-ray pulse with a peak brightness of 4.6×1026 photons/s/mm2/mrad2/0.1%BW (at 100 MeV) and 1.8×1023 photons/s/mm2/mrad2/0.1%BW (at 2 GeV) are obtained at a laser intensity of 8.5×1022 W/cm2 when the plasma density is equal to the critical plasma density nc. In addition, for target 3, the effects of plasma channel length, foil curvature radius, laser polarization, and laser intensity on the γ-ray emission are discussed, and optimal values based on a series of simulations are proposed.
|
Received: 17 January 2021
Revised: 20 April 2021
Accepted manuscript online: 26 April 2021
|
PACS:
|
52.38.-r
|
(Laser-plasma interactions)
|
|
52.38.Ph
|
(X-ray, γ-ray, and particle generation)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11664039, 11875007, and 11664040). |
Corresponding Authors:
Mamat Ali Bake, Baisong Xie
E-mail: mabake@xju.edu.cn;bsxie@bnu.edu.cn
|
Cite this article:
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提) Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma 2021 Chin. Phys. B 30 115202
|
[1] Mourou G A, Tajima T and Bulanov S V 2006 Rev. Mod. Phys. 78 309 [2] Yoon W J, Jeon C, Shin J, Lee K S, Lee W H, Choi W I, Kim T H, Sung H J and Nam H C 2019 Opt. Express 27 20412 [3] Balabanski D L, Popescu R, Stutman D, Tanaka K A, Tesileanu O, Ur C A, Ursescu D and Zamfir N V 2017 Europhys. Lett. 117 28001 [4] Nerush E N, Kostyukov I Y, Fedotov A M, Narozhny N B, Elkina N V and Ruhl H 2011 Phys. Rev. Lett. 106 035001 [5] Liu S Q and Li X Q 2000 Phys. Plasmas 7 3405 [6] Fukuda Y, Akahane Y, Aoyama M, Hayashi Y, Homma T, Inoue N, Kando M, Kanazawa S, Kiriyama H, Kondo S, Kotaki H, Masuda S, Mori M, Yamazaki A, Yamakawa K, Echkina Yu E, Inovenkov N I, Koga J and Bulanov V S 2007 Phys. Lett. A 363 130 [7] Palastro J P and Antonsen T M 2009 Phys. Rev. E 80 016409 [8] Luo W, Liu W Y, Yuan T, Chen M, Yu J Y, Li F Y, Del S D, Ridgers C P and Sheng Z M 2018 Sci. Rep. 8 8400 [9] Piazza A, Muller C, Hatsagortsyan, Karen and Keitel C 2011 Rev. Mod. Phys. 84 1177 [10] Luo W, Wu S D, Liu W Y, Ma Y Y, Li F Y, Yuan T, Yu J Y, Chen M and Sheng Z M 2018 Plasma Phys. Control. Fusion 60 095006 [11] Brown E G, Lee H C, Wijers R A M J, Lee K H, Israelian G and Bethe A H 2000 New Astronomy 5 191 [12] Ruhl H, Bulanov S V, Cowan T E and LisekinaT V 2013 Plasma Phys. Rep. 27 363 [13] Lu Y, Zhang H, Hu Y T, Zhao J, Hu L X, Zou D B, Xu X R, Wang W Q, Liu K and Yu T P 2020 Plasma Phys. Control. Fusion 62 035002 [14] Ma Z G, Yang L H, Liu W Y, Wu S D, Xu Y, Zhu Z C and Luo W 2019 Matter Radiat. Extremes 4 064401 [15] Corde S, Ta Phuoc K, Lambert G, Fitour R, Malka V, Rousse A, Beck A and Lefebvre E 2013 Rev. Mod. Phys. 85 48 [16] Homan D C, Ojha R, Roberts D H and Wardle J F C 1998 Nature 395 457 [17] Rowlands-Rees T P, Kamperidis C, Kneip S, Gonsalves A J, Mangles S P D, Gallacher J G, Brunetti E, Ibbotson T, Murphy C D, Foster P S, Streeter M J V, Budde F, Norreys P A, Jaroszynski D A, Krushelnick K, Najmudin Z and Hooker S M 2008 Phys. Rev. Lett. 100 105005 [18] Hu Y N, Cheng L H, Yao Z W, Zhang X B and Xue J K 2020 Chin. Phys. B 29 084103 [19] Liseykina T V, Borghesi M, Macchi A and Tuveri S 2008 Plasma Phys. Control. Fusion 50 124033 [20] Ferri J and Davoine X 2018 Phys. Rev. Accel. Beams. 21 091302 [21] Zhang G B, Hafz N A M, Ma Y Y, Qian L J, Shao F Q and Sheng Z M 2016 Chin. Phys. Lett. 33 095202 [22] Phuoc T K, Corde S, Thaury C, Malka V, Tafzi A, Goddet J P, Shah R C, Sebban S and Rousse A 2012 Nat. Photon. 6 308 [23] Vargas M, Schumaker W, He Z H, Zhao Z, Behm K, Chvykov V, Hou B, Krushelnick K, Maksimchuk A and Yanovsky V 2014 Appl. Phys. Lett. 104 174103 [24] Matsuoka T, Kneip S, Mcguffey C, Palmer C, Schreiber J, Huntington C, Horovitz Y, Dollar F, Chvykov V and Kalintchenko G 2010 J. Phys. Conf. Ser. 244 042026 [25] Doumy G, Quere F, Gobert O, Perdrix M, Martin Ph, Audebert P, Gauthier J C, Geindre J P and Wittmann T 2004 Phys. Rev. E 69 026402 [26] Boca M and Florescu V 2009 Phys. Rev. A 80 053403 [27] Gong Z, Hu R H, Lu H Y, Yu J Q, Wang D H, Fu E G, Chen C E, He X T and Yan X Q 2018 Plasma Phys. Control. Fusion 60 044004 [28] Luo W, Zhu Y B, Zhuo H B, Ma Y Y, Song Y M, Zhu Z C, Wang X D, Li X H, Turcu I and Chen M 2015 Phys. Plasmas 22 063112 [29] Zhu X L, Chen M, Weng S M, Yu T P, Wang W M, He F, Sheng Z M, Paul M, Jaroszynski D and Zhang J 2020 Sci. Adv. 6 7240 [30] Gu Y J, Klimo O, Bulanov S V and Weber S 2018 Commun. Phys. 1 2399 [31] Bake M A, Tursun A, Aimidula A and Xie B S 2020 Plasma. Sci. Technol. 22 105201 [32] Chang H X, Qiao B, Huang T W, Xu Z, Zhou C T, Gu Y Q, Yan X Q, Zepf M and He X T 2017 Sci. Rep 7 2045 [33] Zhang L Q, Wu S D, Huang H R, Lan H Y, Luo W Y, We Y C, Yang Y, Zhao Z Q, Zhu Z C and Luo W 2021 Phys. Plasmas 28 023110 [34] Böttcher M and Dermer C D 2005 Astrophys. J. 634 L81 [35] Ford L H 1984 Mon. Not. R. Astron. Soc. 211 559 [36] Zhao Y, Liu J, Xia G and Bonatto A 2020 Phys. Plasmas 27 073106 [37] Yuan T, Chen M, Yu J Y, Liu W Y, Luo W, Weng S M and Sheng Z M 2017 Phys. Plasmas 24 063104 [38] Zhu X L, Chen M, Yu T P, Weng S M, He F and Sheng Z M 2019 Matter Radiat. Extremes 4 014401 [39] Thomas A, Ridgers C P, Bulanov S S, Griffin B J and Mangles S P D 2012 Phys. Rev. X 2 41004 [40] Landau L and Lifschitz E 1963 Phys. Today 16 72 [41] Jackson J D 1999 Am. J. Phys. 67 841 [42] Duclous R, Kirk J G and Bell A R 2011 Plasma Phys. Control. Fusion 53 015009 [43] Kirk J G, Bell A R and Arka I 2009 Plasma Phys. Control. Fusion 51 085008 [44] Arber T D, Bennett K, Brady C S, Lawrence Douglas A, Ramsay M G, Sircombe N J, Gillies P, Evans R G, Schmitz H, Bell A R and Ridgers C P 2015 Plasma Phys. Control. Fusion 57 113001 [45] Weng S M, Mulser P and Sheng Z M 2012 Phys. Plasmas 19 022705 [46] Weng S M, Murakami M, Mulser P and Sheng Z M 2012 New J. Phys 14 063026 [47] Siminos M, Grech M, Wettervik B S and Fülöp T 2017 New J. Phys. 19 123042 [48] Ji L L, Pukhov A, Kostyukov I Yu, Shen B F and Akli K 2014 Phys. Rev. Lett. 112 145003 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|