|
|
Soliton dynamical properties of Bose–Einstein condensates trapped in a double square well potential |
Li Jin-Hui(李锦茴)a)† and Li Zhi-Jian(李志坚)b) |
a Mathematics and Science Department, Hunan First Normal University, Changsha 410205, China; b Information Science and Engineering Department, Hunan First Normal University, Changsha 410205, China |
|
|
Abstract We first present an analytical solution of the single and double solitions of Bose-Einstein condensates trapped in a double square well potential using the multiple-scale method. Then, we show by numerical calculation that a dark soliton can be transmitted through the square well potential. With increasing depth of the square well potential, the amplitude of the dark soliton becomes larger, and the soliton propagates faster. In particular, we treat the collision behaviour of the condensates trapped in either equal or different depths of the double square well potential. If we regard the double square well potential as the output source of the solitons, the collision locations (position and time) between two dark solitons can be controlled by its depth.
|
Received: 28 December 2010
Revised: 21 April 2011
Accepted manuscript online:
|
PACS:
|
05.30.Jp
|
(Boson systems)
|
|
02.90.+p
|
(Other topics in mathematical methods in physics)
|
|
11.10.Lm
|
(Nonlinear or nonlocal theories and models)
|
|
Fund: Project supported by the Science Research Foundation of the Education Bureau of Hunan Province of China (Grant No. 09C227). |
Cite this article:
Li Jin-Hui(李锦茴) and Li Zhi-Jian(李志坚) Soliton dynamical properties of Bose–Einstein condensates trapped in a double square well potential 2011 Chin. Phys. B 20 100501
|
[1] |
Burger S, Bongs K, Dettmer S, Ertmer W and Sengstock K 1999 Phys. Rev. Lett. 83 5198
|
[2] |
Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
|
[3] |
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon1 C 2002 Science 296 1290
|
[4] |
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
|
[5] |
Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
|
[6] |
Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
|
[7] |
Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
|
[8] |
Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606
|
[9] |
Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
|
[10] |
Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605
|
[11] |
Zhang W X, Wang D L, He Z M, Wang F J and Ding J W 2008 Phys. Lett. A 372 4407
|
[12] |
She Y C, Wang D L, Zhang W X, He Z M and Ding J W 2010 J. Opt. Soc. Am. B 27 208
|
[13] |
Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
|
[14] |
Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
|
[15] |
Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
|
[16] |
Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
|
[17] |
Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
|
[18] |
Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
|
[19] |
Zhang J M and Liu W M 2010 Phys. Rev. A 82 025602
|
[20] |
He Z M, Wang D L, Zhang W X, Wang F J and Ding J W 2008 Chin. Phys. B 17 3640
|
[21] |
Xi Y D, Wang D L, He Z M and Ding J W 2009 Chin. Phys. B 18 939
|
[22] |
Xi Y D, Wang D L, She Y C, Wang F J and Ding J W 2010 Acta Phys. Sin. 59 3720 (in Chinese)
|
[23] |
She Y C, Wang D L and Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese)
|
[24] |
Li Z D, Li Q Y, He P B, Liang J Q, Liu W M and Fu G S 2010 Phys. Rev. A 81 015602
|
[25] |
Zhang W X, Wang D L and Ding J W 2008 Acta Phys. Sin. 57 6786 (in Chinese)
|
[26] |
He Z M and Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)
|
[27] |
Li Q Y, Li Z D, Wang S X, Song W W and Fu G S 2009 Opt. Commun. 282 1676
|
[28] |
Wang F J, Yan X H, Wang D L and Ding J W 2009 Mod. Phys. Lett. 19 2311
|
[29] |
Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
|
[30] |
Dalfovo E, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
|
[31] |
Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
|
[32] |
Mahmud K W, Kutz J N and Reinhart W P 2002 Phys. Rev. A 66 063607
|
[33] |
Likharev K K 1979 Rev. Mod. Phys. 51 101
|
[34] |
Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
|
[35] |
Zi'n P, Infeld E, Matuszewski M, Rowlands G and Trippenbach M 2006 Phys. Rev. A 73 022105
|
[36] |
Infeld E, Zi'n P, Gocalek J and Trippenbach M 2006 Phys. Rev. E 74 026610
|
[37] |
Matuszewski M, Malomed B A and Trippenbach M 2007 Phys. Rev. A 75 063621
|
[38] |
Wang D L, Yan X H and Tang Y 2004 J. Phys. Soc. Jpn. 73 123
|
[39] |
Wang D L and Yan X H 2011 Int. J. Mod. Phys. B 25 781
|
[40] |
Wang D L, Yang R S and Yang Y T 2007 Commun. Theor. Phys. (Beijing, China) 48 917
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|