Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097306    DOI: 10.1088/1674-1056/19/9/097306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The study on mechanism and model of negative bias temperature instability degradation in P-channel metal–oxide–semiconductor field-effect transistors

Cao Yan-Rong(曹艳荣)a), Ma Xiao-Hua(马晓华)b), Hao Yue(郝跃)c), and Tian Wen-Chao(田文超)a)
a School of Electronics & Mechanical Engineering, Xidian University, Xi'an 710071, China; b School of Technical Physics, Xidian University, Xi'an 710071, China; c Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi'an 710071, China
Abstract  Negative Bias Temperature Instability (NBTI) has become one of the most serious reliability problems of metal–oxide–semiconductor field-effect transistors (MOSFETs). The degradation mechanism and model of NBTI are studied in this paper. From the experimental results, the exponential value 0.25–0.5 which represents the relation of NBTI degradation and stress time is obtained. Based on the experimental results and existing model, the reaction–diffusion model with H + related species generated is deduced, and the exponent 0.5 is obtained. The results suggest that there should be H + generated in the NBTI degradation. With the real time method, the degradation with an exponent 0.5 appears clearly in drain current shift during the first seconds of stress and then verifies that H+ generated during NBTI stress.
Keywords:  NBTI      90nm      p-channel metal–oxide–semiconductor field-effect transistors (PMOSFETs)      model  
Received:  18 September 2009      Revised:  19 March 2009      Accepted manuscript online: 
PACS:  7340Q  
  7300  
  7220J  
Fund: Project supported by the Fundamental Research Funds in Xidian Universities (Grant No. JY10000904009) and the National Key Technology Research and Development Program of the Ministry of Science and Technology of China (Grant No. 2007BAK25B03)

Cite this article: 

Cao Yan-Rong(曹艳荣), Ma Xiao-Hua(马晓华), Hao Yue(郝跃), and Tian Wen-Chao(田文超) The study on mechanism and model of negative bias temperature instability degradation in P-channel metal–oxide–semiconductor field-effect transistors 2010 Chin. Phys. B 19 097306

[1] Huard V, Denais M, Perrier F, Revil N, Parthasarathy C, Bravaix A and Vincent E 2005 Microelectronics Reliability 45 83
[2] Li Z H, Liu H X and Hao Y 2006 Acta Phys. Sin. 55 820 (in Chinese)
[3] Li J, Liu H X and Hao Y 2006 Acta Phys. Sin. 55 2508 (in Chinese)
[4] Huard V, Denais M and Parthasarathy C 2006 Microelectronics Reliability 46 1
[5] Kimizuka N, Yamamoto T, Mogami T, Yamaguchi K, Imai K and Horiuchi T 1999 Symposium on VLSI Technology Digest of Technical Papers 73
[6] Kushida-Abdelghafar K and Watanabe K 2002 Appl. Phys. Lett. 23 4362
[7] Liu H X, Li Z H and Hao Y 2007 Chin. Phys. 16 1445
[8] Li Z H, Liu H X and Hao Y 2006 Chin. Phys. 15 833
[9] Deal B E, Sklar M, Grove A S and Snow E H 1967 J. Electrochem. Soc. bf114 266
[10] Yang T, Shen C, Li M F, Ang C H, Zhu C X, Yeo Y C and Samudra G 2005 IEEE Electron Device Letters 26 826
[11] Chen Y F, Lin M H, Chou C H, Chang W C, Huang S C, Chang Y J, Fu K Y, Lee M T, Liu C H and Fan S K 2000 Integrated Reliability Workshop 98
[12] Massey J G 2004 IRW Final Report 199
[13] Cao Y R, Ma X H, Hao Y, Yu L, Zhu Z W and Chen H F 2007 Chin. Phys. 16 1140
[14] Jha N K and Rao V R 2005 IEEE Electron Device Letters 26 687
[15] Krishnan A T, Chakravarthi S, Nicollian P, Reddy V and Krishnan S 2006 Appl. Phys. Lett. 88 153518
[16] Alam M A 2003 IEDM 345
[17] Krishnan A T, Chakravarthi S, Nicollian P, Reddy V and Krishnan S 2006 Appl. Phys. Lett. 88 153518
[18] Liu E K, Zhu B S and Luo J S 1997 Semiconductor Physics (Beijing: National Defense Industry Press) p139 (in Chinese)
[19] Cao Y R, Hu S G, Ma X H and Hao Y 2008 Chin. Phys. Lett. 25 3393
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] An optimized infinite time-evolving block decimation algorithm for lattice systems
Junjun Xu(许军军). Chin. Phys. B, 2023, 32(4): 040303.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[5] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[6] A simple semiempirical model for the static polarizability of electronically excited atoms and molecules
Alexander S Sharipov, Alexey V Pelevkin, and Boris I Loukhovitski. Chin. Phys. B, 2023, 32(4): 043301.
[7] Acoustic propagation uncertainty in internal wave environments using an ocean-acoustic joint model
Fei Gao(高飞), Fanghua Xu(徐芳华), Zhenglin Li(李整林), Jixing Qin(秦继兴), and Qinya Zhang(章沁雅). Chin. Phys. B, 2023, 32(3): 034302.
[8] Simulation based on a modified social force model for sensitivity to emergency signs in subway station
Zheng-Yu Cai(蔡征宇), Ru Zhou(周汝), Yin-Kai Cui(崔银锴), Yan Wang(王妍), and Jun-Cheng Jiang(蒋军成). Chin. Phys. B, 2023, 32(2): 020507.
[9] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[10] A novel lattice model integrating the cooperative deviation of density and optimal flux under V2X environment
Guang-Han Peng(彭光含), Chun-Li Luo(罗春莉), Hong-Zhuan Zhao(赵红专), and Hui-Li Tan(谭惠丽). Chin. Phys. B, 2023, 32(1): 018902.
[11] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[12] A modified heuristics-based model for simulating realistic pedestrian movement behavior
Wei-Li Wang(王维莉), Hai-Cheng Li(李海城), Jia-Yu Rong(戎加宇), Qin-Qin Fan(范勤勤), Xin Han(韩新), and Bei-Hua Cong(丛北华). Chin. Phys. B, 2022, 31(9): 094501.
[13] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] Green's function Monte Carlo method combined with restricted Boltzmann machine approach to the frustrated J1-J2 Heisenberg model
He-Yu Lin(林赫羽), Rong-Qiang He(贺荣强), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2022, 31(8): 080203.
No Suggested Reading articles found!