Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090309    DOI: 10.1088/1674-1056/19/9/090309
GENERAL Prev   Next  

Exact solution of entanglement of the double Jaynes–Cummings model without rotating wave approximation

Ren Xue-Zao(任学藻), Jiang Dao-Lai(姜道来), Cong Hong-Lu(丛红璐), and Li Lei(黎雷)
School of Science, Southwest University of Science and Technology, Mianyang 621010, China
Abstract  This paper investigates the influences of atom–field coupling and dipole–dipole coupling for atoms on the entanglement between two atoms by means of concurrence. The results show that the sudden death occurs when the atom–field coupling is strong enough, and the collapse and the revival appear when the dipole–dipole interaction is strong enough.
Keywords:  concurrence      sudden death      atom–field coupling      dipole–dipole interaction  
Received:  12 September 2009      Revised:  16 January 2010      Accepted manuscript online: 
PACS:  0365  
  4250  
Fund: Project supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No. 1097602/A06).

Cite this article: 

Ren Xue-Zao(任学藻), Jiang Dao-Lai(姜道来), Cong Hong-Lu(丛红璐), and Li Lei(黎雷) Exact solution of entanglement of the double Jaynes–Cummings model without rotating wave approximation 2010 Chin. Phys. B 19 090309

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge Uni. Press)
[2] Ekert A and Jozsa R 1996 Rev. Mod. Phys. 68 733
[3] Bennett C H, Brassard G, Crépeauc, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[4] Ekert A 1991 Phys. Rev. Lett. 67 661
[5] Gisin N, Ribordy G, Tittel W and Zbinden H 2002 Rev. Mod. Phys. 74 145
[6] Knill E, Laflamme R and Milburn G L 2001 Nature 409 46
[7] Isabel Sainz and Gunnar Bjõrk 2007 Phys. Rev. A 76 042313
[8] Stanley Chan, Reid M D and Ficek Z 2009 J. Phys. B: At. Mol. Opt. 42 065507
[9] Muhammed Yõnac, Ting Yu and Eberly J H 2006 J. Phys. B: At. Mol. Opt. 39 621
[10] Li Y L and Li X M 2008 Chin. Phys. B 17 812
[11] Liao X P, Fang M F, Cai J W and Zheng X J 2008 Chin. Phys. B 17 2137
[12] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888
[13] Sornborger A T, Cleland A N and Geller M R 2004 Phys. Rev. A 70 052315
[14] Armour A D, Blencowe M P and Schwab K C 2002 Phys. Rev. Lett. 88 148301
[15] Anappara A A, Liberato S D, Tredicucci A, Ciuti C, Biasiol G, Sorba L and Beltram F 2009 arXiv:0808.3720v3 [quant-ph]
[16] Chen Q H, Zhang Y Y, Liu T and Wang K L 2008 Phys. Rev. A 78 051801
[17] Liu T, Zhang Y Y, Chen Q H and Wang K L 2009 Phys. Rev. A 80 023801
[18] Liu T, Wang K L and Feng M 2007 J. Phys. B: At. Mol. Opt. Phys. 40 1967
[19] Liu T, Feng M and Wang K L 2007 Commun. Theor. Phys. bf 47 561
[20] Liu T, Fan Y X, Huang S W, Wang K L and Wang Y 2007 it Commun. Theor. Phys. 47 791
[21] Fan Y X, Liu T, Feng M and Wang K L 2007 Commun. Theor. Phys. 47 781
[22] Ren X Z, Jiang D L, Cong H L and Liao X 2009 Acta Phys. Sin. 58 5406 (in Chinese)
[23] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[1] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[2] Entanglement of two distinguishable atoms in a rectangular waveguide: Linear approximation with single excitation
Jing Li(李静), Lijuan Hu(胡丽娟), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2021, 30(9): 090307.
[3] Dissipative dynamics of an entangled three-qubit system via non-Hermitian Hamiltonian: Its correspondence with Markovian and non-Markovian regimes
M Rastegarzadeh and M K Tavassoly. Chin. Phys. B, 2021, 30(3): 034205.
[4] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[5] Entanglement teleportation via a couple of quantum channels in Ising-Heisenberg spin chain model of a heterotrimetallic Fe-Mn-Cu coordination polymer
Yi-Dan Zheng(郑一丹), Zhu Mao(毛竹), Bin Zhou(周斌). Chin. Phys. B, 2019, 28(12): 120307.
[6] Direct measurement of the concurrence of hybrid entangled state based on parity check measurements
Man Zhang(张曼), Lan Zhou(周澜), Wei Zhong(钟伟), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2019, 28(1): 010301.
[7] Dynamics of entanglement protection of two qubits using a driven laser field and detunings: Independent and common, Markovian and/or non-Markovian regimes
S Golkar, M K Tavassoly. Chin. Phys. B, 2018, 27(4): 040303.
[8] Some studies of the interaction between two two-level atoms and SU(1, 1) quantum systems
T M El-Shahat, M Kh Ismail. Chin. Phys. B, 2018, 27(10): 100201.
[9] Comparative analysis of entanglement measures based on monogamy inequality
P J Geetha, Sudha, K S Mallesh. Chin. Phys. B, 2017, 26(5): 050301.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Monogamous nature of symmetric N-qubit states of the W class: Concurrence and negativity tangle
P. J. Geetha, K. O. Yashodamma, Sudha. Chin. Phys. B, 2015, 24(11): 110302.
[12] Entanglement dynamics of a three-qubit system with different interatomic distances
Feng Ling-Juan (封玲娟), Zhang Ying-Jie (张英杰), Zhang Lu (张路), Xia Yun-Jie (夏云杰). Chin. Phys. B, 2015, 24(11): 110305.
[13] Preparation of multi-photon Fock states and quantum entanglement properties in circuit QED
Ji Ying-Hua (嵇英华), Hu Ju-Ju (胡菊菊). Chin. Phys. B, 2014, 23(4): 040307.
[14] Entanglement of two two-level atoms trapped in coupled cavities with a Kerr medium
Wu Qin (吴琴), Zhang Zhi-Ming (张智明). Chin. Phys. B, 2014, 23(3): 034203.
[15] Controllable preparation of two-mode entangled coherent states in circuit QED
Ji Ying-Hua (嵇英华), Liu Yong-Mei (刘咏梅). Chin. Phys. B, 2014, 23(11): 110303.
No Suggested Reading articles found!