Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080310    DOI: 10.1088/1674-1056/19/8/080310
GENERAL Prev   Next  

Probabilistic joint remote preparation of a high-dimensional equatorial quantum state

Zhan You-Bang(詹佑邦)a),Zhang Qun-Yong(张群永)a)b), and Shi Jin(施锦)a)
a School of Physics and Electronic Electrical Engineering, Huaiyin Normal University, Huaian 223300, China; School of Physical Science and Technology, Suzhou University, Suzhou 215006, China
Abstract  This paper proposes a scheme for probabilistic joint remote preparation of an arbitrary high-dimensional equatorial quantum state by using high-dimensional single-particle orthogonal projective measurement and appropriate unitary operation. As a special case, a scheme of joint remote preparation of a single-qutrit equatorial state is presented in detail. The scheme is also generalized to the multi-party high-dimensional case. It shows that, only if when all the senders collaborate with each other, the receiver can reconstruct the original state with a certain probability.
Keywords:  probabilistic joint remote preparation      high-dimensional equatorial quantum state      single-qudit projective measurement  
Received:  07 August 2009      Revised:  09 December 2009      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  02.50.Cw (Probability theory)  

Cite this article: 

Zhan You-Bang(詹佑邦),Zhang Qun-Yong(张群永), and Shi Jin(施锦) Probabilistic joint remote preparation of a high-dimensional equatorial quantum state 2010 Chin. Phys. B 19 080310

[1] Bennett C H, Brassard G , Cr'epeau C, Jozsa R , Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Lo H K 2000 Phys. Rev. A 62 0123132
[3] Pati A K 2001 Phys. Rev. A 63 014302
[4] Bennett C H , Divincenzo D P, Shor P W, Smolin J A, Terhal B M and Wootters W K 2001 Phys. Rev. Lett. 87 077902
[5] Devetak I and Berger T 2001 Phys. Rev. Lett. 87 197901
[6] Zeng B and Zhang P 2002 Phys. Rev. A 65 022316
[7] Berry D W and Sanders B C 2003 Phys. Rev. Lett. 90 057901
[8] Abeyesinghe A and Hayden P 2003 Phys. Rev. A 68 062319
[9] Leung D W and Shor P W 2003 Phys. Rev. Lett. 90 127905
[10] Paris M G A, Cola M and Bonifacio R 2003 J. Opt. B: Quantum Semiclass. Opt. 5 S360
[11] Ye M Y, Zhang Y S and Guo G C 2004 Phys. Rev. A 69 022310
[12] Gour G and Sanders B C 2004 Phys. Rev. Lett. 93 260501
[13] Hayashi A, Hashimoto T and Horibe M 2003 Phys. Rev. A 67 052302
[14] Kurucz Z, Adam P, Kis Z and Janszky J 2005 Phys. Rev. A 72 052315
[15] Dai H Y, Chen P X, Liang L M and Li C Z 2006 Phys. Lett. A 355 285
[16] Zhang Y Q, Jin X R and Zhang S 2005 Chin. Phys. 14 1732
[17] Lin X, Li H C, Lin X M, Li X H and Yang R C 2007 Chin. Phys. 16 1209
[18] Dai H Y, Chen P X, Zhang M and Li C Z 2008 Chin. Phys. B 17 27
[19] Ma P C and Zhan Y B 2008 Chin. Phys. B 17 445
[20] Wang X W and Peng Z H 2008 Chin. Phys. B 17 2346
[21] Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 Phys. Lett. A 306 271
[22] Babichev S A, Brezger B and Lvovsky A I 2004 Phys. Rev. Lett. 92 047903
[23] Xiang G Y, Li J, Yu B and Guo G C 2005 Phys. Rev. A 72 012315
[24] Peters N A, Barreiro J T, Goggin M E, Wei T C and Kwiat P G 2005 Phys. Rev. Lett. 94 150502
[25] Rosenfeld W, Berner S, Volz J, Weber M and Weinfurter H 2007 Phys. Rev. Lett. 98 050504
[26] Xia Y, Song J and Song H S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 3719
[27] An N B and Kim J 2008 J. Phys. B: At. Mol. Opt. Phys. 41 095501
[28] Hou K, Wang J, Lu Y L and Shi S H 2009 Int. J. Theor. Phys. 48 2005
[29] An N B 2009 J. Phys. B: At. Mol. Opt. Phys. 42 125501
[30] Liu J M and Wang Y Z 2003 Phys. Lett. A 316 159
[31] Wang Y W and Zhan Y B 2008 Int. J. Theor. Phys. 47 1121
[32] Hou K, Wang J and Shi S H 2009 Commun. Theor. Phys. 51 641
[33] Xiao X Q and Liu J M 2007 Commun. Theor. Phys. 47 247
[34] Dai H Y, Zhang M and Kuang L M 2008 Commun. Theor. Phys. 50 73
[1] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Fringe visibility and correlation in Mach-Zehnder interferometer with an asymmetric beam splitter
Yan-Jun Liu(刘彦军), Mei-Ya Wang(王美亚), Zhong-Cheng Xiang(相忠诚), and Hai-Bin Wu(吴海滨). Chin. Phys. B, 2022, 31(11): 110305.
[4] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[5] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[6] Analysis and improvement of verifiable blind quantum computation
Min Xiao(肖敏) and Yannan Zhang(张艳南). Chin. Phys. B, 2022, 31(5): 050305.
[7] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[8] Alternative non-Gaussianity measures for quantum states based on quantum fidelity
Cheng Xiang(向成), Shan-Shan Li(李珊珊), Sha-Sha Wen(文莎莎), and Shao-Hua Xiang(向少华). Chin. Phys. B, 2022, 31(3): 030306.
[9] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[10] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[11] Observation of the exceptional point in superconducting qubit with dissipation controlled by parametric modulation
Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Tong Liu(刘桐), Xiaohui Song(宋小会), Pengtao Song(宋鹏涛), Xueyi Guo(郭学仪), Luhong Su(苏鹭红), He Zhang(张贺), Yanjing Du(杜燕京), and Dongning Zheng(郑东宁). Chin. Phys. B, 2021, 30(10): 100309.
[12] Approximate analytical solutions and mean energies of stationary Schrödinger equation for general molecular potential
Eyube E S, Rawen B O, and Ibrahim N. Chin. Phys. B, 2021, 30(7): 070301.
[13] Fine-grained uncertainty relation for open quantum system
Shang-Bin Han(韩尚斌), Shuai-Jie Li(李帅杰), Jing-Jun Zhang(张精俊), and Jun Feng(冯俊). Chin. Phys. B, 2021, 30(6): 060315.
[14] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[15] Parameter accuracy analysis of weak-value amplification process in the presence of noise
Jiangdong Qiu(邱疆冬), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Lan Luo(罗兰), Yu He(何宇), Changliang Ren(任昌亮), Zhiyou Zhang(张志友), and Jinglei Du(杜惊雷). Chin. Phys. B, 2021, 30(6): 064216.
No Suggested Reading articles found!