CLASSICAL AREAS OF PHENOMENOLOGY |
Prev
Next
|
|
|
High energy and long pulse generation with high-birefringence photonic crystal fibre and laser-diode pumped regenerative amplifier |
Wang He-Lin(王河林)a)†, Wang Cheng(王承)a), Leng Yu-Xin(冷雨欣)a), Xu Zhi-Zhan(徐至展)a), and Hou Lan-Tian(候蓝田)b) |
a State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; b Institute of Infrared Fiber and Sensor Technology, School of Information Technology and Engineering, Yanshan University, Qinhuangdao 066004, China |
|
|
Abstract We report on the generation of a high energy and long pulse for pumping optical parametric chirped-pulse amplification (OPCPA) by a high-birefringence photonic crystal fibre (HB-PCF) and a laser-diode-pumped regenerative chirped pulse amplifier. Using the femtosecond pump pulse centred at 815 nm, a 1064 nm soliton pulse is produced in the HB-PCF. After injecting it into an Nd:YAG regenerative amplifier with the glass etalons, a narrow-band amplified pulse with an energy of $\sim $4 mJ and a duration of 235 ps is achieved at a repetition rate of 10 Hz, which is suitable for being used as a pump source in the 800 nm OPCPA system.
|
Received: 05 August 2009
Revised: 02 November 2009
Accepted manuscript online:
|
PACS:
|
42.55.Tv
|
(Photonic crystal lasers and coherent effects)
|
|
42.55.Wd
|
(Fiber lasers)
|
|
42.55.Xi
|
(Diode-pumped lasers)
|
|
42.60.Lh
|
(Efficiency, stability, gain, and other operational parameters)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
Fund: Project supported by the National
Basic Research Program of China (Grant No.~2006CB806001), the
Knowledge Innovation Program of the Chinese Academy of Sciences
(Grant No.~KGCX-YW-417-2), the Fund of the State Key Laboratory of
High Field Laser Physics and Shanghai Commission of Science and
Technology, China (Grant No.~07JC14055). |
Cite this article:
Wang He-Lin(王河林), Wang Cheng(王承), Leng Yu-Xin(冷雨欣), Xu Zhi-Zhan(徐至展), and Hou Lan-Tian(候蓝田) High energy and long pulse generation with high-birefringence photonic crystal fibre and laser-diode pumped regenerative amplifier 2010 Chin. Phys. B 19 054212
|
[1] |
Xu Y Q, Murdoch S G, Leonhardt R and Harvey J D 2008 Opt. Lett. 33 1351
|
[2] |
Travers J C, Rulkov A B, Cumberland B A, Popov S V and Taylor J R 2008 Opt. Express 16 14435
|
[3] |
Khan K R, Wu T X, Christodoulides D N and Stegeman G I 2008 Opt. Express 16 9417
|
[4] |
Kurokawa K, Ieda K, Tajima K, Nakajima K, Shiraki K and Sankawa I 2007 Opt. Express 15 397
|
[5] |
Liu B W, Hu M L, Song Y J, Chai L and Wang Q Y 2008 Acta Phys. Sin. 57 6921 (in Chinese)
|
[6] |
Furusawa K, Malinowski A, Price J H V, Monro T M, Sahu J K, Nilsson J and Richardson D J 2001 Opt. Express 9 714
|
[7] |
de Matos C J S, Popov S V, Rulkov A B, Taylor J R, Broeng J, Hansen T P and Gapontsev V P 2004 Phys. Rev. Lett. 93 103901
|
[8] |
Lim H, Ilday F O and Wise F W 2002 Opt. Express 10 1497
|
[9] |
Okuno M, Kano H, Leproux P, Couderc V and Hamaguchi H 2007 Opt. Lett. 32 3050
|
[10] |
Udem Holzwarth T R and H\"{ansch T W 2002 Nature 416 233
|
[11] |
Teisset C Y, Ishii N, Fuji T, Metzger T, K\"{ohler S, Holzwarth R, Baltuska A, Zheltikov A M and Krausz F 2005 Opt. Express 13 6550
|
[12] |
Hartl I, Li X D, Chudoba C, Rhanta R K, Ko T H, Fujimoto J G, Ranka J K and Windeler R S 2001 Opt. Lett. 26 608
|
[13] |
Konorov S O, Akimov D A, Serebryannikov E E, Ivanov A A, Alfimov M V and Zheltikov A M 2004 Phys. Rev. E 70 057601
|
[14] |
Cardoso L, Pires H and Figueira G 2009 Opt. Lett. 34 1369
|
[15] |
Yamakawa K, Aoyama M, Akahane Y, Ogawa K, Tsuji K, Sugiyama A, Harimoto T, Kawanaka J, Nishioka H and Fujita M 2007 Opt. Express 15 5018
|
[16] |
Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 1
|
[17] |
Zhao Z Y, Duan K L, Wang J M, Zhao W and Wang Y S 2008 Acta Phys. Sin. 57 6335 (in Chinese)
|
[18] |
Yang X, Xu Z, Zhang Z, Leng Y, Peng J, Wang J, Jin S, Zhang W and Li R 2001 Appl. Phys. B Lasers Opt. 73 219
|
[19] |
Leng Y X, Liang X Y, Zhao B Z, Wang C, Jiang Y L, Yang X D, Lu H, Lin L H, Zhang Z Q, Li R X and Xu Z Z 2006 IEEE J. Sel. Top. Quant. 12 187
|
[20] |
Xu Z Z and Li R X 2007 Chin. Opt. Lett. 5 1
|
[21] |
Leng Y X, Yang X D, Lu H H, Lin L H, Zhang Z H, Li R X, Yin D J and Xu Z Z 2004 Optical Engineering 43 2994
|
[22] |
Agrawal G P 2001 Nonlinear Fiber Optics (Singapore: Elsevier Pte Ltd.) p136
|
[23] |
Damm T, Kaschke M, Noack F and Wilhelmi B 1985 Opt. Lett. 10 176
|
[24] |
Tavella F, Marcinkevicius A and Krausz F 2006 Opt. Express 14 12822
|
[25] |
Yamakawa K, Aoyama M, Akahane Y, Ogawa K, Tsuji K and Sugiyama A 2007 Opt. Express 15 5018
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|