Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054206    DOI: 10.1088/1674-1056/19/5/054206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Phase control of spontaneous emission from a double-band photonic crystals

Zhang Ke(张珂)a)b), Zhu Yan-Ping(祝艳萍) a), Jiang Li(姜丽)a), and Zhang Han-Zhuang(张汉壮)a)†
a College of Physics, Jilin University, Changchun 130061, China; b  Laboratory of Optical Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  Through picture of dressed states, this paper investigates the spontaneous emission spectrum from a microwave-driven three-level atom embedded in a double-band photonic crystals. The physical dynamics of the phase dependent phenomenon is analysed by comparing two models `upper level coupling' and `lower level coupling'. When the phase is changed from 0 to $\pi$, the variety of spontaneous emission spectra from either of the two models are inverse to each other, in which the relative height and width of peaks are determined by the density of states in photonic crystals.
Keywords:  photonic crystals      spontaneous emission      phase  
Received:  25 August 2008      Revised:  24 August 2009      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.50.-p (Quantum optics)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10774060 and 10974071).

Cite this article: 

Zhang Ke(张珂), Zhu Yan-Ping(祝艳萍), Jiang Li(姜丽), and Zhang Han-Zhuang(张汉壮) Phase control of spontaneous emission from a double-band photonic crystals 2010 Chin. Phys. B 19 054206

[1] Faist J, Capasso F, Sivco D L, Sirtori C, Hutchinson A L and Cho A Y 1994 Science 264 553
[2] Xu G E and Li A Z 2007 Acta Phys. Sin. 56 500 (in Chinese)
[3] Kosterev A A and Tittel F K 2002 IEEE J. Quantum Electron. 38 582
[4] Li H Q, Zhang J, Cui D F, Xu Z Y, Ning Y Q, Yan C L, Qin L, Liu Y, Wang L J and Cao J L 2004 Acta Phys. Sin. 53 2986 (in Chinese)
[5] Hao Y Q, Zhong J C, Ma J L, Zhang Y M and Wang L J 2006 Chin. Phys. 15 1806
[6] Guan B L, Guo X, Yang H, Liang T, Gu X L, Guo J, Deng J, Gao G and Shen G D 2007 Acta Phys. Sin. 56 4585 (in Chinese)
[7] Song G F, Zhang Y, Guo B S and Wang W M 2009 Acta Phys. Sin. 58 7278 (in Chinese)
[8] Hofstetter D, Faist J, Beck M and Oesterle U 1999 Appl. Phys. Lett. 75 3769
[9] Schrenk W, Finger N, Gianordoli S, Hvozdara L, Strasser G and Gornik E 2000 Appl. Phys. Lett. 77 2086
[10] Pflugl C, Austerer M, Schrenk W, Golka S, Strasser G, Green R P, Wilson L R, Cockburn J W, Krysa A B and Roberts J S 2005 Appl. Phys. Lett. 86 211102
[11] Schartner S, Austerer M, Schrenk W, Andrews A M, Klang P and Strasser G 2008 Opt. Express 16 11920
[12] Colombelli R, Srinivasan K, Troccoli M, Painter O, Gmachl C F, Tennant D M, Sergent A M, Sivco D L, Cho A Y and Capasso F 2003 Science 302 1374
[13] Li L 1996 J. Opt. Soc. Amer. A 13 1870
[14] Finger N, Schrenk W and Gornik E 2000 IEEE J. Quantum Electron. 36 780
[15] Finger N and Gornik E 1999 IEEE J. Quantum Electron. 35 832
[16] Streifer W, Burnham R D and Scifres D R 1976 IEEE J. Quantum Electron. QE-12 737
[17] Noll R J and Macomber S H 1990 IEEE J. Quantum Electron. 26 456
[18] Darvish S R, Zhang W, Evans A, Yu J S, Slivken S and Razeghi M 2006 Appl. Phys. Lett. 89 251119
[19] Wittmann A, Giovannini M, Faist J, Hvozdara L, Blaser S, Hofstetter D and Gini E 2006 Appl. Phys. Lett. 89 141116
[20] Scarpa G, Ulbrich N, Bohm G, Abstreiter G and Amann M C 2003 IEE Proc. -Optoelecton. 150 284
[21] Datta S, Shen S, Roenker K P, Cahay M M and Stanchina W E 1998 IEEE Trans. Electron Devices 45 1634
[22] Shokhovets S, Ambacher O and Gobsch G 2007 Phys. Rev. B 76 125203
[23] Levinshtein M, Rumyantsev S and Shur M 1996 Handbook Series on Semiconductor Parameters (Vol.~1) (Singapore: World Scientific) p169
[24] Bahriz M, Moreau V, Palomo J, Colombelli R, Austin D A, Cockburn J W, Wilson L R, Krysa A B and Roberts J S 2006 Appl. Phys. Lett. 88 181103
[25] Agrawal G P and Dutta N K 1986 Long-wavelength Semiconductor Lasers (New York: van Nostrand) p61
[26] Li S, Witjaksono G, Macomber S and Botez D 2003 IEEE J. Sel. Top. Quantum Electron. 9 1153
[27] Schubert M and Rana F 2006 IEEE J. Quantum Electron. 42 257
[1] Simulation of single bubble dynamic process in pool boiling process under microgravity based on phase field method
Chang-Sheng Zhu(朱昶胜), Bo-Rui Zhao(赵博睿), Yao Lei(雷瑶), and Xiu-Ting Guo(郭秀婷). Chin. Phys. B, 2023, 32(4): 044702.
[2] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[3] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[4] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[5] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[6] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[7] Quantum control of ultrafast magnetic field in H32+ molecules by tricircular polarized laser pulses
Qing-Yun Xu(徐清芸), Yong-Lin He(何永林), Zhi-Jie Yang(杨志杰), Zhi-Xian Lei(雷志仙),Shu-Juan Yan(闫淑娟), Xue-Shen Liu(刘学深), and Jing Guo(郭静). Chin. Phys. B, 2023, 32(3): 033202.
[8] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[9] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[10] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[11] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[12] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[13] Design of a coated thinly clad chalcogenide long-period fiber grating refractive index sensor based on dual-peak resonance near the phase matching turning point
Qianyu Qi(齐倩玉), Yaowei Li(李耀威), Ting Liu(刘婷), Peiqing Zhang(张培晴),Shixun Dai(戴世勋), and Tiefeng Xu(徐铁峰). Chin. Phys. B, 2023, 32(1): 014204.
[14] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[15] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
No Suggested Reading articles found!