Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(5): 054204    DOI: 10.1088/1674-1056/19/5/054204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Phase properties of odd and even circular states

Wang Yue-Yuan(王月媛)a)b), Liu Zheng-Jun(刘正君)c), Liao Qing-Hong(廖庆洪)a), and Liu Shu-Tian(刘树田)a)†
a Department of Physics, Harbin Institute of Technology, Harbin 150001, China; b Department of Physics, Harbin Normal university, Harbin 150001, China; c Department of Automation Measurement and Control Engineering, Harbin Institute of Technology, Harbin 150001, China
Abstract  Phase properties of the even and odd circular states are studied within the Hermitian phase formalism of Pegg and Barnett. Exact analytical formulas for the distribution function and the variance of the phase operator are obtained and used to examine whether or not the even and odd circular states exhibit photon-number squeezing and phase squeezing.
Keywords:  even and odd circular states      Pegg--Barnett phase formalism      phase probability distribution      phase squeezing and photon-number squeezing  
Received:  13 July 2009      Revised:  03 November 2009      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Ca (Formalism)  
  02.30.Tb (Operator theory)  
  02.50.Cw (Probability theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~10674038 and 10604042) and the National Basic Research Program of China (Grant No.~2006CB302901).

Cite this article: 

Wang Yue-Yuan(王月媛), Liu Zheng-Jun(刘正君), Liao Qing-Hong(廖庆洪), and Liu Shu-Tian(刘树田) Phase properties of odd and even circular states 2010 Chin. Phys. B 19 054204

[1] Glauber R J 1963 Phys. Rev. 131 2766
[2] Klauder J R and Sudarshan E C G 1968 Fundamentals of Quantum Optics (New York: Benjamin)
[3] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[4] Schleich W, Pernigo M and Fam Le Kien 1991 Phys. Rev. A 44 2172
[5] Gamal M and Abd Al-Kader 1999 Acta Phys. Sin. 48 754 (in Chinese)
[6] Muhammad A A, Ren M, Ma A Q and Liu S T 2008 Chin. Phys. B 17 1777
[7] Janszky J, Domokos P and Adam P 1993 Phys. Rev. A 48 2213
[8] Gagen M J 1995 Phys. Rev. A 51 2715
[9] Janszky J, Domokos P, Szabo S and Adam P 1995 Phys. Rev. A 51 4191
[10] Ragi R, Baseia B and Mizrahi S S 2000 J. Opt. { B: Quantum Semiclass. Opt. 2 299
[11] Ye Y H and Zeng G J 2007 Chin. Phys. 16 1554
[12] Szabo S, Adam P, Janszky J and Domokos P 1996 Phys. Rev. A 53 2698
[13] Wolinsky M and Carmichael H J 1988 Phys. Rev. Lett. 60 1836
[14] Brune M, Haroche S, Lefevre V, Raimond J M and Zagury N 1990 Phys. Rev. Lett. 65 976
[15] Brune M, Haroche S, Raimond J M, Davidovich L and Zagury N 1992 Phys. Rev. A 45 5193
[16] Domokos P, Janszky J and Adam P 1994 Phys. Rev. A 50 3340
[17] Jose W D and Mizrahi S S 2000 J. Opt. { B: Quantum Semiclass. Opt. 2 306
[18] Smithey D T, Beck M, Cooper J and Raymer M G 1993 Phys. Rev. A 48 3159
[19] Buzek V, Gantsog Ts and Kim M S 1993 Phys. Scr. T48 131
[20] Dirac P A M 1927 Proc. Roy. Soc. (London) A 114 243
[21] Susskind L and Glogower J 1964 Physics 1 49
[22] Pegg D T and Barnett S M 1988 Europhys. Lett. 6 483
[23] Barnett S M and Pegg D T 1989 J. Mod. Opt. 36 7
[24] Pegg D T and Barnett S M 1989 Phys. Rev. A 39 1665
[25] Zhou P 1993 Acta Phys. Sin. (Overseas Edition) 401
[26] Fan A F 1996 Acta Phys. Sin. (Overseas Edition) 737
[27] Tanas R, Miranowicz A and Gantsog Ts In: Wolf E (Ed) 1996 Progress in Optics 35 (Amsterdam: Elsevier)
[28] Tian Y H, Peng J S, Xu D H and Han L B 1999 Acta Phys. Sin. 48 252 (in Chinese)
[29] Wang J S, Liu T K, Feng J and Sun J Z 2004 Acta Phys. Sin. 53 3729 (in Chinese)
[30] Qian Y, Ma A Q, Ma Z M, Liu Z J and Liu S T 2007 Acta Phys. Sin. 56 4571 (in Chinese)
[31] Guo H and Guo G C 1993 Acta Phys. Sin. 42 918 (in Chinese)
[32] Gerry C C and Knight P L 2005 Introductory Quantum Optics (UK: Cambridge University Press) 46-47 177
[33] Glauber R J and Lewenstein M 1991 Phys. Rev. A 43 467
[1] Finite-dimensional even and odd nonlinear pair coherent states and their some nonclassical properties
Meng Xiang-Guo(孟祥国), Wang Ji-Suo(王继锁), and Liu Tang-Kun(刘堂昆). Chin. Phys. B, 2008, 17(9): 3350-3357.
[2] The nonlinear squeezed one-photon states and their nonclassical properties
Wang Ji-Suo(王继锁) and Meng Xiang-Guo(孟祥国). Chin. Phys. B, 2007, 16(8): 2422-2427.
No Suggested Reading articles found!