Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044101    DOI: 10.1088/1674-1056/19/4/044101

Analytical solutions to the electromagnetic field in a cylindrical shell excited by external axial current

Wu Jing(吴静) and Xiao Chun-Yan(肖春燕)
School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Abstract  The solutions to the electromagnetic field excited by a long axial current outside a conductive and magnetic cylindrical shell of finite length are studied in this paper. The more accurate analytical solutions are obtained by solving the proper boundary value problems by the separation variable method. Then the solutions are simplified according to asymptotic formulas of Bessel functions. Compared with the accurate solutions, the simplified solutions do not contain the Bessel functions and the inverse operation of the singular matrix, and can be calculated out fast by computers. The simplified solutions are more suitable for the cylindrical shell of high permeability and conductivity excited by a high frequency source. Both of the numerical results and the physical experimental results validate the simplified solutions obtained.
Keywords:  analytical solution      electromagnetic field      ferrite shell      axial current  
Received:  11 September 2009      Revised:  09 November 2009      Accepted manuscript online: 
PACS:  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  41.20.Cv (Electrostatics; Poisson and Laplace equations, boundary-value problems)  
  02.30.Gp (Special functions)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the State Key Lab of Power Systems, China (Grant No.~SKLD09KM06).

Cite this article: 

Wu Jing(吴静) and Xiao Chun-Yan(肖春燕) Analytical solutions to the electromagnetic field in a cylindrical shell excited by external axial current 2010 Chin. Phys. B 19 044101

[1] Dodd C V and Deeds W E 1968 J. Appl. Phys. 39 2829
[2] Zhao T E, Wu R X, Yang F and Chen P 2006 Acta Phys. Sin. 55 179 (in Chinese)
[3] Jiao C Q and Luo J R 2006 Acta Phys. Sin. 55 6360 (in Chinese)
[4] Hu S D, Li Z J and Zhang B 2009 Chin. Phys. B18 315
[5] Tegopoulos J A and Kriezis E E 1973 IEEE Trans. Power Appl. Syst. 92 742
[6] Kriezis E E, Chrissoulidis D P and Georgiadis L G 1982 IEE Proc. Part A 129 }54
[7] Gong L, Hagel R, Zhang K and Unbehauen R 1992 IEEE Trans. Magn. 28 1154
[8] Namjoshi K V, Lavers J D and Biringer P P 1998 IEEE Trans. Magn. 34 636
[9] Namjoshi K V, Lavers J D and Biringer P P 1994 IEEE Trans. Magn. 30 85
[10] Wu J and Lei Y Z 2002 J. Phys. D 35 570
[11] Bowler N 2004 J. Appl. Phys. 95 344
[12] Siva Kumar V, Kelekanjeri G and Gerhardt Rosario A 2007 J. Appl. Phys. 101 044904
[13] Theodoulidis Theodoros P 2003 J. Appl. Phys. 95 3071
[14] Theodoulidis Theodoros P 2008 J. Appl. Phys. 103] 024905
[15] Lei Y Z 2000 Analysis Method on Time-harmonic Electromagnetic Fields (Beijing: Science Press) p.217
[1] Simulation of the physical process of neural electromagnetic signal generation based on a simple but functional bionic Na+ channel
Fan Wang(王帆), Jingjing Xu(徐晶晶), Yanbin Ge(葛彦斌), Shengyong Xu(许胜勇),Yanjun Fu(付琰军), Caiyu Shi(石蔡语), and Jianming Xue(薛建明). Chin. Phys. B, 2022, 31(6): 068701.
[2] An electromagnetic view of relay time in propagation of neural signals
Jing-Jing Xu(徐晶晶), San-Jin Xu(徐三津), Fan Wang(王帆), and Sheng-Yong Xu(许胜勇). Chin. Phys. B, 2021, 30(2): 028701.
[3] Selective synthesis of three-dimensional ZnO@Ag/SiO2@Ag nanorod arrays as surface-enhanced Raman scattering substrates with tunable interior dielectric layer
Jia-Jia Mu(牟佳佳), Chang-Yi He(何畅意), Wei-Jie Sun(孙伟杰), Yue Guan(管越). Chin. Phys. B, 2019, 28(12): 124204.
[4] Current-phase relations of a ring-trapped Bose-Einstein condensate with a weak link
Xiu-Rong Zhang(张秀荣), Wei-Dong Li(李卫东). Chin. Phys. B, 2019, 28(1): 010303.
[5] Detection of invisible phonon modes in individual defect-free carbon nanotubes by gradient-field Raman scattering
Feng Yang(杨丰), Yinglu Ji(纪英露), Xiao Zhang(张霄), Qingxia Fan(范庆霞), Nan Zhang(张楠), Xiaogang Gu(谷孝刚), Zhuojian Xiao(肖卓建), Qiang Zhang(张强), Yanchun Wang(王艳春), Xiaochun Wu(吴晓春), Junjie Li(李俊杰), Weiya Zhou(周维亚). Chin. Phys. B, 2017, 26(7): 078801.
[6] Analytical solution based on the wavenumber integration method for the acoustic field in a Pekeris waveguide
Wen-Yu Luo(骆文于), Xiao-Lin Yu(于晓林), Xue-Feng Yang(杨雪峰), Ren-He Zhang(张仁和). Chin. Phys. B, 2016, 25(4): 044302.
[7] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[8] Electromagnetic field quantization and input-output relation for anisotropic magnetodielectric metamaterial
Dong Yun-Xia (董云霞), Liu Chun-Ying (刘春颖). Chin. Phys. B, 2015, 24(6): 064206.
[9] Time fractional dual-phase-lag heat conduction equation
Xu Huan-Ying (续焕英), Jiang Xiao-Yun (蒋晓芸). Chin. Phys. B, 2015, 24(3): 034401.
[10] Inverse problem of pulsed eddy current field of ferromagnetic plates
Chen Xing-Le (陈兴乐), Lei Yin-Zhao (雷银照). Chin. Phys. B, 2015, 24(3): 030301.
[11] Closed-form solution of mid-potential between two parallel charged plates with more extensive application
Shang Xiang-Yu (商翔宇), Yang Chen (杨晨), Zhou Guo-Qing (周国庆). Chin. Phys. B, 2015, 24(10): 108203.
[12] The stability of a shearing viscous star with an electromagnetic field
M. Sharif, M. Azama. Chin. Phys. B, 2013, 22(5): 050401.
[13] Singularities of noncompact charged objects
M. Sharif, G. Abbas. Chin. Phys. B, 2013, 22(3): 030401.
[14] Application of the homotopy analysis method for the Gross-Pitaevskii equation with a harmonic trap
Shi Yu-Ren (石玉仁), Liu Cong-Bo (刘丛波), Wang Guang-Hui (王光辉), Zhou Zhi-Gang (周志刚). Chin. Phys. B, 2012, 21(12): 120307.
[15] Analytical investigation of the boundary-triggered phase transition dynamics in a cellular automata model with a slow-to-start rule
Jia Ning (贾宁), Ma Shou-Feng (马寿峰), Zhong Shi-Quan (钟石泉). Chin. Phys. B, 2012, 21(10): 100206.
No Suggested Reading articles found!