CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors |
Dai You-Yong(代由勇), Yan Shi-Shen(颜世申)†,Tian Yu-Feng(田玉峰),Chen Yan-Xue(陈延学), Liu Guo-Lei(刘国磊), and Mei Liang-Mo(梅良模) |
School of Physics, and National Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China |
|
|
Abstract This paper proposes a universal spin-dependent variable range hopping theoretical model to describe various experimental transport phenomena observed in wide-band-gap oxide ferromagnetic semiconductors with high transition metal concentration. The contributions of the `hard gap' energy, Coulomb interaction, correlation energy, and exchange interaction to the electrical transport are considered in the universal variable range hopping theoretical model. By fitting the temperature and magnetic field dependence of the experimental sheet resistance to the theoretical model, the spin polarization ratio of electrical carriers near the Fermi level and interactions between electrical carriers can be obtained.
|
Received: 05 May 2009
Revised: 04 July 2009
Accepted manuscript online:
|
PACS:
|
72.25.Dc
|
(Spin polarized transport in semiconductors)
|
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.50.Dd
|
(Nonmetallic ferromagnetic materials)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
71.20.Nr
|
(Semiconductor compounds)
|
|
72.20.Dp
|
(General theory, scattering mechanisms)
|
|
Fund: Project supported by the National
Basic Research Program of China (Grant Nos.~2007CB924903 and
2009CB929202), and the National Natural Science Foundation of China
(Grant No.~10974120). |
Cite this article:
Dai You-Yong(代由勇), Yan Shi-Shen(颜世申),Tian Yu-Feng(田玉峰),Chen Yan-Xue(陈延学), Liu Guo-Lei(刘国磊), and Mei Liang-Mo(梅良模) Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors 2010 Chin. Phys. B 19 037203
|
[1] |
Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat.Mater. 4 173
|
[2] |
Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T,Kawasaki M, Ahmet P, Chikyow T, Koshihara S Y and Koinuma H 2001Science 291 854
|
[3] |
Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
[4] |
Shinde S R, Ogale S B, Das Sarma S, Simpson J R, Drew H D,Lofland S E, Lanci C, Buban J P, Browning N D, Kulkarni V N, HigginsJ, Sharma R P, Greene R L and Venkatesan T 2003 Phys. Rev. B 67 115211
|
[5] |
Punnoose A, Hays J, Thurber A, Engelhard M H, Kukkadapu R K,Wang C, Shutthanandan V and Thevuthasan S 2005 Phys. Rev. B72 054402
|
[6] |
Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Schmidt-GrundR, Sturm C, Spemann D and Grundmann M 2006 Phys. Rev. B73 205342
|
[7] |
Andrearczyk T, Jaroszyń ski J, Grabecki G, Dietl T, Fukumura Tand Kawasaki M 2005 Phys. Rev. B 72 121309(R)
|
[8] |
Xu Q, Hartmann L, Schmidt H, Hochmuth H, Lorenz M, Schmidt-GrundR, Sturm C, Spemann D, Grundmann M and Liu Y 2007 J. Appl.Phys. 101 063918
|
[9] |
Reuss F, Frank S, Kirchner C, Kling R, Gruber T and Waag A 2005Appl. Phys. Lett. 87 112104
|
[10] |
Yan S S, Ren C, Wang X, Xin Y, Zhou Z X, Mei L M, Ren M J, ChenY X, Liu Y H and Garmestani H 2004 Appl. Phys. Lett. 84 2376
|
[11] |
Tian Y F, Yan S S, Zhang Y P, Xing P F, Liu G L, Chen Y X andMei L M 2007 J. Phys.: Condens. Matter 19 326206
|
[12] |
Yan S S, Liu J P, Mei L M, Tian Y F, Song H Q, Chen Y X and LiuG L 2006 J. Phys.: Condens. Matter 18 10469
|
[13] |
Tian Y F, Yan S S, Zhang Y P, Song H Q, Ji G, Liu G L, Chen YX, Mei L M, Liu J P, Altuncevahir B and Chakka V 2006 J. Appl.Phys. 100 103901
|
[14] |
Song H Q, Mei L M, Yan S S, Ma X L, Liu J P, Wang Y and Zhang Z2006 J. Appl. Phys. 99 123903
|
[15] |
Tian Y F, Zhang Y P, Yan S S, Liu G L, Chen Y X, Mei L M, Ji Gand Zhang Z 2007 Appl. Phys. Lett. 91 013509
|
[16] |
Peng X D, Zhu T, Wang F W, Huang W G and Cheng Z H 2009 Chin.Phys. B 18 2576
|
[17] |
Hu S J, Yan S S, Lin X L, Yao X X, Chen Y X, Liu G L and Mei LM 2007 Appl. Phys. Lett. 91 262514
|
[18] |
Viret M, Ranno L and Coey J M D 1997 Phys. Rev. B 55 8067
|
[19] |
Ambegaokar V, Halperin B I and Langer J S 1971 Phys. Rev.B 4 2612
|
[20] |
Inoue J and Maekawa S 1996 Phys. Rev. B 53 R11927
|
[21] |
Ju S and Li Z Y 2002 J. Appl. Phys. 92 5281
|
[22] |
Aharony A, Zhang Y and Sarachik M P 1992 Phys. Rev. Lett. 68 3900
|
[23] |
Terry I, Penney T, Molná r S von and Becla P 1992 Phys.Rev. Lett. 69 1800
|
[24] |
Dai P, Zhang Y and Sarachik M P 1992 Phys. Rev. Lett. 69 1804
|
[25] |
Chicon R, Ortu\ {n o M and Pollak M 1988 Phys. Rev. B 37 10520
|
[26] |
Morizur J-F, Ono Y, Kageshima H, Inokawa H and Yamaguchi H 2007Phys. Rev. Lett. 98 166601
|
[27] |
Efros A L and Shklovskii B I1975 J. Phys. C 8 L49
|
[28] |
Dietl T, Haury A and Merle d'Aubigné Y 1997 Phys.Rev. B 55 R3347
|
[29] |
Shklovskii B I and Efros A L 1984 Electronic Properties ofDoped Semiconductors (Berlin: Springer-Verlag) Chapter 9
|
[30] |
Mott N F 1968 J. Non-Cryst. Solids 1 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|