Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 036102    DOI: 10.1088/1674-1056/19/3/036102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Damage of low-energy ion irradiation on copper nanowire: molecular dynamics simulation

Zou Xue-Qing(邹雪晴)a), Xue Jian-Ming(薛建明) a)b)†, and Wang Yu-Gang(王宇钢)a)
a State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100861, China; b Center for Applied Physics and Technology, Peking University, Beijing 100861, China
Abstract  Physical and chemical phenomena of low-energy ion irradiation on solid surfaces have been studied systematically for many years, due to the wide applications in surface modification, ion implantation and thin-film growth. Recently the bombardment of nano-scale materials with low-energy ions gained much attention. Comared to bulk materials, nano-scale materials show different physical and chemical properties. In this article, we employed molecular dynamics simulations to study the damage caused by low-energy ion irradiation on copper nanowires. By simulating the ion bombardment of 5 different incident energies, namely, 1 keV, 2 keV, 3 keV, 4 keV and 5 keV, we found that the sputtering yield of the incident ion is linearly proportional to the energies of incident ions. Low-energy impacts mainly induce surface damage to the nanowires, and only a few bulk defects were observed. Surface vacancies and adatoms accumulated to form defect clusters on the surface, and their distribution are related to the type of crystal plane, e.g. surface vacancies prefer to stay on (100) plane, while adatoms prefer (110) plane. These results reveal that the size effect will influence the interaction between low-energy ion and nanowire.
Keywords:  low-energy ion      irradiation      nanowire      molecular dynamics simulation  
Received:  14 March 2009      Revised:  26 August 2009      Accepted manuscript online: 
PACS:  61.82.Rx (Nanocrystalline materials)  
  61.80.Jh (Ion radiation effects)  
  61.82.Bg (Metals and alloys)  
  79.20.Rf (Atomic, molecular, and ion beam impact and interactions with surfaces)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  61.80.Az (Theory and models of radiation effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10675009).

Cite this article: 

Zou Xue-Qing(邹雪晴), Xue Jian-Ming(薛建明), and Wang Yu-Gang(王宇钢) Damage of low-energy ion irradiation on copper nanowire: molecular dynamics simulation 2010 Chin. Phys. B 19 036102

[1] Patolsky F, Timko B P, Zheng G and Lieber C M 2007 MRS-Bulletin 32 142
[2] Lu W and Lieber C M 2007 Nat. Mater. 6 841
[3] Kang J W, Seo J J, Byun K R and Hwang H J 2002 Phys. Rev. B66 125405
[4] Diao J, Gall K and Dunn M L 2004 J. Mech. Phys. Sol. 52 1935
[5] Gu X K and Cao B Y 2007 Chin. Phys. 16 3777
[6] Wen Y, Zhang Y, Zhu Z and Sun S 2009 Acta Phys. Sin.58 2585 (in Chinese)
[7] Tombrello T A 1987 Nucl. Instr. Meth. Phys. Res. B27 221
[8] Rusponi S, Boragno C and Valbusa U 1997 Phys. Rev. Lett.78 2795
[9] Rusponi S, Costantini G, de Mongeot F Buatier, Boragno C and ValbusaU 1999 Appl. Phys. Lett. 75 3318
[10] Ye Z Y and Zhang Q Y 2001 Chin. Phys. 10 329
[11] Ishigami M, Choi H J, Aloni S, Louie S G, Cohen M L and Zettl A 2004 Phys. Rev. Lett. 93 196803
[12] Biersack J P 1987 Nucl. Instr. Meth. Phys. Res. B27 21
[13] Ritter M, Stindtmann M, Farle M X, Baberschke K 1996 Surf.Sci. 348 243
[14] Xue J M and Imanishi N 2002 Chin. Phys. 11 245
[15] Pan J, Takeda Y, Amekura H, Nakayama Y, Song M and Kishimoto N 2008 Nanotechnology 19 375306
[16] Sun Z H, Wang X X and Wu H A 2008 J. Appl. Physiol. 104 033501
[17] Ziegler J F, Biersack J P and Littmark U 1985 The Stoppingand Range of Ions in Matter (Oxford: Pergamon Press)
[18] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[19] Mishin Y, Mehl M J, Papaconstantopoulos D A, Voter A F and Kress J D2001 Phys. Rev. B 63 224106
[20] Osetsky Y N and Bacon D J 2001 Nucl. Instr. Meth. Phys. Res. B 180 85
[21] Eckstein W, Garcia R C, Roth J and Ottenberger W 1996 Phys. Rev. B 53 11376
[22] Eckstein W, Garcia R C, Roth J and Ottenberger W 1993 Sputtering Data Report IPP p196
[23] Wu H A, Soh A K, Wang X X and Sun Z H 2004 Key Eng. Mat. 261 33
[24] Jarvi T T, Kuronen A and Nordlund K 2007 J. Appl. Physiol. 102 124304
[25] Stoltze P 1994 J. Phys.: Condens. Matter 6 9495
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[3] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[4] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[5] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[6] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[7] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[8] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[9] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[12] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[13] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[14] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[15] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
No Suggested Reading articles found!