Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 034209    DOI: 10.1088/1674-1056/19/3/034209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Filamentation-assisted fourth-order nonlinear process in KTP crystal

Zhang Xi-Peng(张喜鹏), Jiang Hong-Bing(蒋红兵), Chen Li(陈利), Jiang Ying-Ying(蒋莹莹), Yang Hong(杨宏), and Gong Qi-Huang(龚旗煌)
State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
Abstract  We present an experimental investigation of a filamentation-assisted fourth-order nonlinear optical process in KTP crystals pumped by intense 1.53 eV (807 nm) femtosecond laser pulses. Femtosecond light pulses at 2.58 eV (480 nm) are generated by the fourth-order nonlinear polarization $(P^{(4)}(\omega_2))=\chi^{(4)}(\omega_2, \omega, \omega, \omega, -\omega_1)E^3(\omega)E^*(\omega_1)$, where $E(\omega)$ corresponds to the pump frequency and $E(\omega_1)$ to the supercontinuum generated through filamentation). If the system is seeded by a laser beam at $\omega_1$ or $\omega_2$ and there are spatial and temporal overlaps with the pump beam, $E(\omega_1)$ and $E(\omega_2)$ are simultaneously amplified. When the intensity of the seed laser beam exceeds a certain intensity threshold, the contribution of $P^{(4)}(\omega)=\chi^{(4)}(\omega, \omega_1,\omega_2, -\omega, -\omega)E(\omega_1)E(\omega_2)(E^*(\omega))^2$ becomes non-negligible, and the amplification weakens. The conversion efficiency from the pump to the signal at 2.58 eV (480 nm) attains to 0.1%.
Keywords:  parametric amplification      filamentation      fourth-order nonlinear polarization      KTP crystal  
Received:  13 April 2009      Revised:  14 September 2009      Accepted manuscript online: 
PACS:  42.70.Mp (Nonlinear optical crystals)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Basic Research Program, China (Grant No.~2006CB806007), and the National Natural Science Foundation of China (Grant Nos.~10574006, 10634020 and 10821062).

Cite this article: 

Zhang Xi-Peng(张喜鹏), Jiang Hong-Bing(蒋红兵), Chen Li(陈利), Jiang Ying-Ying(蒋莹莹), Yang Hong(杨宏), and Gong Qi-Huang(龚旗煌) Filamentation-assisted fourth-order nonlinear process in KTP crystal 2010 Chin. Phys. B 19 034209

[1] Kandidov V P, Kosareva O G, Golubtsov I S, Liu W, Becker A, Akozbek N, Bowden C M and Chin S L 2003 Appl. Phys. B 77 149
[2] Brodeur A and Chin S L 1998 Phys. Rev. Lett. 80 4406
[3] Cao S Y, Song Z M, Qin Y, Wang Q Y and Zhang Z G 2009 Acta Phys. Sin. 58 3971 (in Chinese)
[4] Quan D H, Liu S L, Zhang L, Yang J, Wang L, Yang G Z and Weng Y X 2003 Chin. Phys. B 12 986
[5] Hao Z Q, Zhang J, Zhang Z, Lu X, Jin Z, Zhong J Y, Liu Y Q and Wang Z H 2008 Chin. Phys. Lett. 25 1365
[6] Duan Z L, Chen J P, Fang Z B, Wang X T, Li R X, Lin L H and Xu Z Z 2004 Acta Phys. Sin. 53 473 (in Chinese)
[7] Duan Z L, Chen J P, Li R X, Lin L H and Xu Z Z 2004 Chin. Phys. 13 359
[8] Naga Srinivas N K M, Sree Harsha S and Narayana Rao D 2005 Opt. Express 13 3224
[9] Sai Santosh Kumar R, Sree Harsha1 S and Narayana Rao D 2007 Appl. Phys. B 86 615
[10] Zeng H P, Wu J, Xu H, Wu K and Wu E 2004 Phys. Rev. Lett. 92 143903
[11] Zeng H P, Wu J, Xu H and Wu K 2006 Phys. Rev. Lett. 96 083902
[12] Trillo S, Conti C, Trapani P D, Jedrkiewicz O, Trull J, Valiulis G andBellanca G 2002 Opt. Lett. 27 1451
[13] Zhang X P, Jiang H B, Chen L, Jiang Y Y, Yang H and Gong Q H 2008 Opt. Lett.33 1374
[14] Weber M J 1986 CRC Handbook of Laser Science andTechnology Vol. III, OpticalMaterials, Part I: Nonlinear Optical Properties/Radiation Damage (Bocn Raton: CRC Press) p152
[1] High power supercontinuum generation by dual-color femtosecond laser pulses in fused silica
Saba Zafar, Dong-Wei Li(李东伟), Acner Camino, Jun-Wei Chang(常峻巍), and Zuo-Qiang Hao(郝作强). Chin. Phys. B, 2022, 31(8): 084209.
[2] Quantitative evaluation of LAL productivity of colloidal nanomaterials: Which laser pulse width is more productive, ergonomic, and economic?
Alena Nastulyavichus, Nikita Smirnov, and Sergey Kudryashov. Chin. Phys. B, 2022, 31(7): 077803.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] An easily-prepared impedance matched Josephson parametric amplifier
Ya-Peng Lu(卢亚鹏), Quan Zuo(左权), Jia-Zheng Pan(潘佳政), Jun-Liang Jiang(江俊良), Xing-Yu Wei(魏兴雨), Zi-Shuo Li(李子硕), Wen-Qu Xu(许问渠), Kai-Xuan Zhang(张凯旋), Ting-Ting Guo(郭婷婷), Shuo Wang(王硕), Chun-Hai Cao(曹春海), Wei-Wei Xu(许伟伟), Guo-Zhu Sun(孙国柱), and Pei-Heng Wu(吴培亨). Chin. Phys. B, 2021, 30(6): 068504.
[5] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[6] Properties of long light filaments in natural environment
Shi-You Chen(陈式有), Hao Teng(滕浩), Xin Lu(鲁欣), Zong-Wei Shen(沈忠伟), Shuang Qin(秦爽), Wen-Shou Wei(魏文寿), Rong-Yi Chen(陈荣毅), Li-Ming Chen(陈黎明), Yu-Tong Li(李玉同), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 085203.
[7] Intense supercontinuum generation in the near-ultraviolet range from a 400-nm femtosecond laser filament array in fused silica
Dongwei Li(李东伟), Lanzhi Zhang(张兰芝), Saba Zafar, He Song(宋鹤), Zuoqiang Hao(郝作强), Tingting Xi(奚婷婷), Xun Gao(高勋), Jingquan Lin(林景全). Chin. Phys. B, 2017, 26(7): 074213.
[8] Compact surface plasmon amplifier in nonlinear hybrid waveguide
Shu-shu Wang(王曙曙), Dan-qing Wang(王丹青), Xiao-peng Hu(胡小鹏), Tao Li(李涛), Shi-ning Zhu(祝世宁). Chin. Phys. B, 2016, 25(7): 077301.
[9] Lasing dynamics study by femtosecond time-resolved fluorescence non-collinear optical parametric amplification spectroscopy
Wei Dang(党伟), Qing Liao(廖清), Peng-Cheng Mao(毛鹏程), Hong-Bing Fu(付红兵), Yu-Xiang Weng(翁羽翔). Chin. Phys. B, 2016, 25(5): 054207.
[10] Filamentation instability in two counter-streaming laser plasmas
Hui Liu(刘慧), Quan-Li Dong(董全力), Da-Wei Yuan(袁大伟), Xun Liu(刘勋), Neng Hua(华能), Zhan-Feng Qiao(乔战峰), Bao-Qiang Zhu(朱宝强), Jian-Qiang Zhu(朱健强), Bo-Bin Jiang(蒋柏彬), Kai Du(杜凯), Yong-Jian Tang(唐永健), Gang Zhao(赵刚), Xiao-Hui Yuan(远晓辉), Zheng-Ming Sheng(盛政明), Jie Zhang(张杰). Chin. Phys. B, 2016, 25(12): 125201.
[11] Enhancement of third harmonic generation in air filamentation using obstacles
Liu Xiao-Long (刘晓龙), Lu Xin (鲁欣), Du Zhi-Gui (杜志贵), Ma Jing-Long (马景龙), Li Yu-Tong (李玉同), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(3): 034207.
[12] Defocusing role in femtosecond filamentation: Higher-order Kerr effect or plasma effect?
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(11): 114207.
[13] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
[14] Coherent effect of triple-resonant optical parametric amplification inside a cavity with injection of a squeezed vacuum field
Di Ke (邸克), Zhang Jing (张靖). Chin. Phys. B, 2013, 22(9): 094205.
[15] Amplification of fluorescence using collinear picosecond optical parametric amplification at degeneracy
Zhang Jing (张静), Zhang Qiu-Lin (张秋琳), Jiang Man (江曼), Zhang Dong-Xiang (张东香), Feng Bao-Hua (冯宝华), Zhang Jing-Yuan(张景园). Chin. Phys. B, 2012, 21(8): 084211.
No Suggested Reading articles found!