|
|
Improvement on generalised synchronisation of chaotic systems |
Zhu Hui-Bin(朱会宾)a)†,Qiu Fang(邱芳)a)b), and Cui Bao-Tong(崔宝同)a) |
a College of Communications and Control Engineering, Jiangnan University, Wuxi 214122, China; b Department of Mathematics, Binzhou University, Binzhou 256603, China |
|
|
Abstract In this paper, the problem of generalised synchronisation of two different chaotic systems is investigated. Some less conservative conditions are derived using linear matrix inequality other than existing results. Furthermore, a simple adaptive control scheme is proposed to achieve the generalised synchronisation of chaotic systems. The proposed method is simple and easy to implement in practice and can be applied to secure communications. Numerical simulations are also given to demonstrate the effectiveness and feasibility of the theoretical analysis.
|
Received: 06 June 2009
Revised: 14 September 2009
Accepted manuscript online:
|
PACS:
|
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
05.45.Vx
|
(Communication using chaos)
|
|
84.40.Ua
|
(Telecommunications: signal transmission and processing; communication satellites)
|
|
Fund: Project supported by the Natural
Science Foundation of Jiangsu Province, China (Grant No.
BK2007016). |
Cite this article:
Zhu Hui-Bin(朱会宾),Qiu Fang(邱芳), and Cui Bao-Tong(崔宝同) Improvement on generalised synchronisation of chaotic systems 2010 Chin. Phys. B 19 030515
|
[1] |
Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University)
|
[2] |
Zhang S H and Shen K 2004 Chin. Phys. 13 1215
|
[3] |
Mu J, Tao C and Du G H 2003 Chin. Phys. 12 381
|
[4] |
Hu M F and Xu Z Y 2007 Chin. Phys. 16 3231
|
[5] |
Boccaletti S, Kurths J, Osipov G, Valladares D L andZhou C S 2002 Phys. Rep. 366 1
|
[6] |
Zhang J S and Xiao X C 2001 Acta Phys. Sin. 50 2121 (in Chinese)
|
[7] |
Rulkov N F, Vorontsov M A and Illing L 2002 Phys. Rev. Lett. 89 277905
|
[8] |
Schafer C, Rosenblum M G, Kurths J and Abel H 1998 Nature 392 239
|
[9] |
Landsman A S and Schwartz I B 2007 Phys. Rev. E 75 026201
|
[10] |
Xiao Y Z and Xu W 2007 Chin. Phys. 16 1597
|
[11] |
Wang Q Y, Lu Q S and Wang H X 2005 Chin. Phys. 14 189
|
[12] |
Xiao Y Z, Xu W, Li X C and Tang S F 2008 Chin. Phys. B 17 80
|
[13] |
Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H 1995 Phys. Rev. E51 980
|
[14] |
Chen Z, Lin W and Zhou J 2007 Chaos 17023106
|
[15] |
Rulkov N F and Lewis C T 2001 Phys. Rev. E 63 065204
|
[16] |
Meng J and Wang X Y 2008 Chaos 18 023108
|
[17] |
Li G H 2007 Chin. Phys. 16 2608
|
[18] |
Jia Z, Lu J A, Deng G M and Zhang Q J 2007 Chin. Phys. 16 1246
|
[19] |
Hramov A E and Koronovskii A A 2005 Phys. Rev. E 71 067201
|
[20] |
Hramov A E, Koronovskii A A and Moskalenko O I 2005 Europ.Lett. 72 901
|
[21] |
Li D and Zheng Z G 2008 Chin. Phys. B 17 4009
|
[22] |
Zhang H, Ma X K, Yang Yu and Xu C D 2005 Chin. Phys. 14 86
|
[23] |
Zhang R, Xu Z Y and He X M 2007 Chin. Phys. 16 1912
|
[24] |
Zhang S H and Shen K 2002 Chin. Phys. 11 894
|
[25] |
Zhang R X and Yang S P 2008 Chin. Phys. B 174073
|
[26] |
Yu S M, Ma Z G, Qiu S S, Peng S G and Lin Q H 2004 Chin. Phys. 13 317
|
[27] |
Zhou P and Cao Y X 2007 Chin. Phys. 16 2903
|
[28] |
Senthilkumar D V, Lakshmanan M and Kurths J 2006 Phys.Rev. E 74 035205
|
[29] |
Yang X L and Xu W 2008 Chin. Phys. B 17 2004
|
[30] |
Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B18 482
|
[31] |
Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 784193
|
[32] |
Zhang H G, Ma T D, Yu W and Fu J 2008 Chin. Phys. B 17 3616
|
[33] |
Zhou C S and Kurths J 2002 Phys. Rev. Lett. 23 0602
|
[34] |
Hramova A E, Koronovskiia A A 2005 Physica D 206 252
|
[35] |
Zhu H B and Cui B T 2007 Chaos 17 043122
|
[36] |
Sun Z K, Xu W and Yang X L 2007 Chin. Phys. 16 3226
|
[37] |
Yang T and Chua L O 1997 IEEE Trans. Circ. Syst. I44 976
|
[38] |
Niu Y J, Xu W, Rong H W, Ma L and Feng J L 2009 Acta Phys.Sin. 58 2983 (in Chinese)
|
[39] |
Fradkov A L and Pogromsky A Y 1996 IEEE Trans. Circ. Syst. I43 907
|
[40] |
Hu J and Zhang Q J 2008 Chin. Phys. B 17 503
|
[41] |
Lou X Y and Cui B T 2008 Chin. Phys. B 17 520
|
[42] |
Gao B J and Lu J A 2007 Chin. Phys. 16 666
|
[43] |
Li C D, Liao X F and Huang T W 2007 Chaos 17 013103
|
[44] |
? ochowski M 2000 Physica D 145 181
|
[45] |
Agiza H N and Yassen M T 2001 Phys. Lett. A 278 191
|
[46] |
Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
|
[47] |
Huang D B 2005 Phys. Rev. E 71 037203
|
[48] |
Hunt B R, Ott E and Yorke J A 1997 Phys. Rev. E 55 4029
|
[49] |
Cuomo K M and Oppenheim A V 1993 Phys. Rev. Lett. 71 65
|
[50] |
van Wiggeren G D 1998 Phys. Rev. Lett. 81 3547
|
[51] |
Parlitz U, Kocarev L, Stojanovski T and Preckel H 1996 Phys. Rev. E 53 4351
|
[52] |
Zhan M, Wang X G, Gong X F, Wei G W and Lai C H 2003 Phys. Rev. E 68 036208
|
[53] |
Min L Q, Zhang X D and Chen G R 2005 Int. J. Bifurcation Chaos Appl. Sci.Eng. 15 119
|
[54] |
Kocarev L and Parlitz U 1996 Phys. Rev. Lett. 76 1816
|
[55] |
Cui B T, Chen J and Lou X Y 2008 Chin. Phys. B171670
|
[56] |
Boccaletti S and Valladares1 D L 2000 Phys. Rev.E 62 7497
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|