Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(3): 030203    DOI: 10.1088/1674-1056/19/3/030203
GENERAL Prev   Next  

Chaos in the perturbed Korteweg-de Vries equation with nonlinear terms of higher order

Pan Wei-Zhen(潘伟珍), Song Xiang-Jiong(宋向炯), and Yu Jun(俞军)†ger
Department of Physics, Shaoxing University, Shaoxing 312000, China
Abstract  The dynamical behaviour of the generalized Korteweg-de Vries (KdV) equation under a periodic perturbation is investigated numerically. The bifurcation and chaos in the system are observed by applying bifurcation diagrams, phase portraits and Poincaré maps. To characterise the chaotic behaviour of this system, the spectra of the Lyapunov exponent and Lyapunov dimension of the attractor are also employed.
Keywords:  generalized KdV equation      bifurcation      chaos  
Received:  17 December 2008      Revised:  02 August 2009      Accepted manuscript online: 
PACS:  05.45.Yv (Solitons)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  02.30.Oz (Bifurcation theory)  
  02.30.Uu (Integral transforms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.~10875078) and the Natural Science Foundation of Zhejiang Province, China (Grant No.~Y7080455).

Cite this article: 

Pan Wei-Zhen(潘伟珍), Song Xiang-Jiong(宋向炯), and Yu Jun(俞军) Chaos in the perturbed Korteweg-de Vries equation with nonlinear terms of higher order 2010 Chin. Phys. B 19 030203

[1] Lou S Y 1998 Phys. Rev. Lett. 80 5027
[2] Peng L Z, Zhang M X, Gegenhasi and Liu Q P 2008 Phys. Lett. A 372 4197
[3] Ren B and Lin J 2009 Chin. Phys. B 18 1161
[4] Kangalgil F and Ayaz F 2009 Chaos, Solitonsand Fractals 41 464
[5] Wang J and Li B 2009 Chin. Phys. B 18 2109
[6] Qian S P and Tian L X 2007 Chin. Phys. 16 303
[7] Yang J R and Mao J J 2008 Chin. Phys. B 17 4337
[8] Moon H T 1990 Phys. Rev. Lett. 64 412
[9] Moon H T 1991 Phys. Fluid A 3 2709
[10] Zheng D J, Yeh W J and Symko O G 1989 Phys.Lett. A 140 225
[11] Abdullaev F Kh 1989 Phys. Rep. 179 1
[12] Cao Q, Djidjeli K, Price W G and Twizell E H 1999Physica D 125 201
[13] Blyuss K B 2002 Rep. Math. Phys. 49 29
[14] Yu J, Zhang W J and Gao X M 2006 Commun.Theor. Phys. 46 1
[15] Yu J, Zhang W J and Gao X M 2007 Chaos,Solitons and Fractals 33 1307
[16] Lai X, Cao Q and Twizell E H 2005 Chaos,Solitons and Fractals 23 1613
[17] Fornberg B and Whitham G B 1978 Phil. Trans.R. Soc. Lond. A 289 373
[18] Perko L 1991 Differential Equations andDynamical System (New York: Springer-Verlag)
[19] Bona J L, Souganidis P E and Strauss W A 1987 Proc. R. Soc. London A 411 395
[20] Pego R L and Weinstein M I 1992 Phil. Trans.R. Soc. Lond. A 340 47
[21] Laedke E W and Spatschek K H 1984 J. PlasmaPhys. 32 263
[22] Kaplan H and Yorke J A 1979 Lecture Note inMathematics (Berlin: Springer-Verlag)
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[5] A novel algorithm to analyze the dynamics of digital chaotic maps in finite-precision domain
Chunlei Fan(范春雷) and Qun Ding(丁群). Chin. Phys. B, 2023, 32(1): 010501.
[6] Synchronously scrambled diffuse image encryption method based on a new cosine chaotic map
Xiaopeng Yan(闫晓鹏), Xingyuan Wang(王兴元), and Yongjin Xian(咸永锦). Chin. Phys. B, 2022, 31(8): 080504.
[7] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[8] Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior
Xueyi Guan(管学义), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2022, 31(7): 070507.
[9] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[10] Bifurcation and dynamics in double-delayed Chua circuits with periodic perturbation
Wenjie Yang(杨文杰). Chin. Phys. B, 2022, 31(2): 020201.
[11] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[12] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[13] Resonance and antiresonance characteristics in linearly delayed Maryland model
Hsinchen Yu(于心澄), Dong Bai(柏栋), Peishan He(何佩珊), Xiaoping Zhang(张小平), Zhongzhou Ren(任中洲), and Qiang Zheng(郑强). Chin. Phys. B, 2022, 31(12): 120502.
[14] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[15] Extremely hidden multi-stability in a class of two-dimensional maps with a cosine memristor
Li-Ping Zhang(张丽萍), Yang Liu(刘洋), Zhou-Chao Wei(魏周超), Hai-Bo Jiang(姜海波), Wei-Peng Lyu(吕伟鹏), and Qin-Sheng Bi(毕勤胜). Chin. Phys. B, 2022, 31(10): 100503.
No Suggested Reading articles found!