Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 118601    DOI: 10.1088/1674-1056/19/11/118601
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of small-molecule material on performance of polymer solar cells based on MEH-PPV:PCBM blend

Liu Xiao-Dong(刘晓东), Xu Zheng(徐征), Zhang Fu-Jun(张福俊), Zhao Su-Ling(赵谡玲), Zhang Tian-Hui(张天慧), Gong Wei(龚伟), Song Jing-Lu (宋晶路), Kong Chao(孔超), Yan Guang(闫光), and Xu Xu-Rong(徐叙瑢)
Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Ministry of Education, Beijing 100044, China
Abstract  In this work, the influence of a small-molecule material, tris(8-hydroxyquinoline) aluminum (Alq3), on bulk heterojunction (BHJ) polymer solar cells (PSCs) is investigated in devices based on the blend of poly(2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). By doping Alq3 into MEH-PPV:PCBM solution, the number of MEH-PPV excitons can be effectively increased due to the energy transfer from Alq3 to MEH-PPV, which probably induces the increase of photocurrent generated by excitons dissociation. However, the low carrier mobility of Alq3 is detrimental to the efficient charge transport, thereby blocking the charge collection by the respective electrodes. The balance between photon absorption and charge transport in the active layer plays a key role in the performance of PSCs. For the case of 5 wt.% Alq3 doping, the device performance is deteriorated rather than improved as compared with that of the undoped device. On the other hand, we adopt Alq3 as a buffer layer instead of commonly used LiF. All the photovoltaic parameters are improved, yielding an 80% increase in power conversion efficiency (PCE) at the optimum thickness (1 nm) as compared with that of the device without any buffer layer. Even for the 5 wt.% Alq3 doped device, the PCE has a slight enhancement compared with that of the standard device after modification with 1 nm (or 2 nm) thermally evaporated Alq3. The performance deterioration of Alq3-doped devices can be explained by the low solubility of Alq3, which probably deteriorates the bicontinuous D-A network morphology; while the performance improvement of the devices with Alq_3 as a buffer layer is attributed to the increased light harvesting, as well as blocking the hole leakage from MEH-PPV to the aluminum (Al) electrode due to the lower highest occupied molecular orbital (HOMO) level of Alq3 compared with that of MEH-PPV.
Keywords:  bulk heterojunction polymer solar cells      Alq3      doping      buffer layer  
Received:  12 April 2010      Revised:  21 May 2010      Accepted manuscript online: 
PACS:  73.50.Dn (Low-field transport and mobility; piezoresistance)  
  73.50.Pz (Photoconduction and photovoltaic effects)  
  73.61.Ph (Polymers; organic compounds)  
  84.60.Jt (Photoelectric conversion)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60978060, 10804006, 10974013 and 10774013), the Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 20090009110027 and 20070004024), the Research Fund for the Youth Scholars of the Doctoral Program of Higher Education, China (Grant No. 20070004031), the Beijing Nova Program (Grant No. 2007A024)), the Beijing Municipal Natural Science Foundation (Grant No. 1102028), the National Natural Science Funds for Distinguished Young Scholar (Grant No. 60825407), the Beijing Municipal Science & Technology Commission (Grant No. Z090803044009001), and the National Basic Research Program of China (Grant No. 2010CB327705).

Cite this article: 

Liu Xiao-Dong(刘晓东), Xu Zheng(徐征), Zhang Fu-Jun(张福俊), Zhao Su-Ling(赵谡玲), Zhang Tian-Hui(张天慧), Gong Wei(龚伟), Song Jing-Lu (宋晶路), Kong Chao(孔超), Yan Guang(闫光), and Xu Xu-Rong(徐叙瑢) Influence of small-molecule material on performance of polymer solar cells based on MEH-PPV:PCBM blend 2010 Chin. Phys. B 19 118601

[1] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[2] Reyes-Reyes M, Kim K and Carroll D L 2005 Appl. Phys. Lett. 87 083506
[3] Kim J Y, Lee K, Coates N E, Moses D, Nguyen T Q, Dante M and Heeger A J 2007 Science 317 222
[4] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y and Li G 2009 Nature Photon. 3 649
[5] Peumans P, Uchida S and Forrest S R 2003 Nature 425 158
[6] Peumans P, Yakimov A and Forrest S R 2003 J. Appl. Phys. 93 3693
[7] Zhao D W, Sun X W, Jiang C Y, Kyaw A K K, Lo G Q and Kwong D L 2008 Appl. Phys. Lett. 93 083305
[8] Zhang C F, Tong S W, Jiang C Y, Kang E T, Chan D S H and Zhu C X 2008 Appl. Phys. Lett. 92 083310
[9] Hayashi Y, Sakuragi H, Soga T, Alexandrou I and Amaratunga G A J 2008 Colloids and Surfaces A 313--314 422
[10] Zhang F L, Ceder M and Ingan"as O 2007 Adv. Mater. 19 1835
[11] Kepler R G, Beeson P M, Jacobs S J, Anderson R A, Sinclair M B, Valencia V S and Cahill P A 1995 Appl. Phys. Lett. 66 3618
[12] Gupta D, Bag M and Narayan K S 2008 Appl. Phys. Lett. 92 093301
[13] Inigo A R, Chiu H C, Fann W, Huang Y S, Jeng U S, Hsu C H, Peng K Y and Chen S A 2003 Synth. Met. 139 581
[14] Mihailetchi V D, Wildeman J and Blom P W M 2005 Phys. Rev. Lett. 94 126602
[15] Liu Y X, Summers M A, Edder C, Fr'echet J M J and McGehee M D 2005 Adv. Mater. 17 2960
[16] Kao P C, Chu S Y, Huang H H, Tseng Z L and Chen Y C 2009 Thin Solid Films 517 5301
[17] Scharber M C, M"uhlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C J 2006 Adv. Mater. 18 789
[18] Liu J, Shi Y and Yang Y 2001 Adv. Funct. Mater. 11 420
[19] Brabec C J 2004 Sol. Energy Mater. Sol. Cells 83 273
[20] Chan M Y, Lai S L, Fung M K, Lee C S and Lee S T 2007 Appl. Phys. Lett. 90 023504
[21] Song Q L, Li F Y, Yang H, Wu H R, Wang X Z, Zhou W, Zhao J M, Ding X M, Huang C H and Hou X Y 2005 Chem. Phys. Lett. 416 42
[22] Li Y W, Liu P Y, Hou L T and Wu B 2010 Acta Phys. Sin. 59 1248 (in Chinese)
[23] Wang N N, Yu J S, Zang Y and Jiang Y D 2010 Chin. Phys. B 19 038602
[24] Orimo A, Masuda K, Honda S, Benten H, Ito S, Ohkita H and Tsuji H 2010 Appl. Phys. Lett. 96 043305
[25] Aernouts T, Geens W, Poortmans J, Heremans P, Borghs S and Mertens R 2002 Thin Solid Films 403--404 297 endfootnotesize
[1] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[2] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[3] A novel monoclinic phase and electrically tunable magnetism of van der Waals layered magnet CrTe2
Qidi Ren(任启迪), Kang Lai(赖康), Jiahao Chen(陈家浩), Xiaoxiang Yu(余晓翔), and Jiayu Dai(戴佳钰). Chin. Phys. B, 2023, 32(2): 027201.
[4] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[5] Designing a P2-type cathode material with Li in both Na and transition metal layers for Na-ion batteries
Jianxiang Gao(高健翔), Kai Sun(孙凯), Hao Guo(郭浩), Zhengyao Li(李正耀), Jianlin Wang(王建林), Xiaobai Ma(马小柏), Xuedong Bai(白雪东), and Dongfeng Chen(陈东风). Chin. Phys. B, 2022, 31(9): 098201.
[6] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[7] Broadband chirped InAs quantum-dot superluminescent diodes with a small spectral dip of 0.2 dB
Hong Wang(王虹), Zunren Lv(吕尊仁), Shuai Wang(汪帅), Haomiao Wang(王浩淼), Hongyu Chai(柴宏宇), Xiaoguang Yang(杨晓光), Lei Meng(孟磊), Chen Ji(吉晨), and Tao Yang(杨涛). Chin. Phys. B, 2022, 31(9): 098104.
[8] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[9] Improving efficiency of inverted perovskite solar cells via ethanolamine-doped PEDOT:PSS as hole transport layer
Zi-Jun Wang(王子君), Jia-Wen Li(李嘉文), Da-Yong Zhang(张大勇), Gen-Jie Yang(杨根杰), and Jun-Sheng Yu(于军胜). Chin. Phys. B, 2022, 31(8): 087802.
[10] Improved performance of MoS2 FET by in situ NH3 doping in ALD Al2O3 dielectric
Xiaoting Sun(孙小婷), Yadong Zhang(张亚东), Kunpeng Jia(贾昆鹏), Guoliang Tian(田国良), Jiahan Yu(余嘉晗), Jinjuan Xiang(项金娟), Ruixia Yang(杨瑞霞), Zhenhua Wu(吴振华), and Huaxiang Yin(殷华湘). Chin. Phys. B, 2022, 31(7): 077701.
[11] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[12] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[13] MOS-based model of four-transistor CMOS image sensor pixels for photoelectric simulation
Bing Zhang(张冰), Congzhen Hu(胡从振), Youze Xin(辛有泽), Yaoxin Li(李垚鑫), Zhuoqi Guo(郭卓奇), Zhongming Xue(薛仲明), Li Dong(董力), Shanzhe Yu(于善哲), Xiaofei Wang(王晓飞), Shuyu Lei(雷述宇), and Li Geng(耿莉). Chin. Phys. B, 2022, 31(5): 058503.
[14] Photoelectrochemical activity of ZnO:Ag/rGO photo-anodes synthesized by two-steps sol-gel method
D Ben Jemia, M Karyaoui, M A Wederni, A Bardaoui, M V Martinez-Huerta, M Amlouk, and R Chtourou. Chin. Phys. B, 2022, 31(5): 058201.
[15] Self-screening of the polarized electric field in wurtzite gallium nitride along [0001] direction
Qiu-Ling Qiu(丘秋凌), Shi-Xu Yang(杨世旭), Qian-Shu Wu(吴千树), Cheng-Lang Li(黎城朗), Qi Zhang(张琦), Jin-Wei Zhang(张津玮), Zhen-Xing Liu(刘振兴), Yuan-Tao Zhang(张源涛), and Yang Liu(刘扬). Chin. Phys. B, 2022, 31(4): 047103.
No Suggested Reading articles found!