|
|
Accurate ab initio study of low-lying electronic states of phosphorus nitride radical |
Wang Jie-Min(王杰敏)a)b), Sun Jin-Feng(孙金锋) a)b)†, and Shi De-Heng(施德恒)a) |
a College of Physics & Information Engineering, Henan Normal University, Xinxiang 453007, China; b Department of Physics & Electronic Information, Luoyang Normal College, Luoyang 471022, China |
|
|
Abstract This paper employs the highly accurate valence internally contracted multireference configuration interaction method to investigate the potential energy curves (PECs) for the ground state (X1$\varSigma$+) and two low-lying excited states (A1$\varPi$ and D1$\varDelta$ of phosphorus nitride (PN) radical with the correlation-consistent basis set, aug-cc-pV6Z, in the valence range. Relativistic effects are considered in these calculations. The spectroscopic constants of the X1$\varSigma$+ and A1$\varPi$ states are calculated based on the PECs, and the results are in good accord with the available experimental data. The first 30 vibrational states for the A1$\varPi$ state and the first 40 vibrational states for the A1$\varPi$ state are determined when J =0. For each vibrational state, molecular constants $G(v)$, $B(v)$ and $D(v)$ are also attained.
|
Received: 05 April 2010
Revised: 10 May 2010
Accepted manuscript online:
|
PACS:
|
31.15.A-
|
(Ab initio calculations)
|
|
31.50.Bc
|
(Potential energy surfaces for ground electronic states)
|
|
31.50.Df
|
(Potential energy surfaces for excited electronic states)
|
|
33.15.Mt
|
(Rotation, vibration, and vibration-rotation constants)
|
|
33.20.Tp
|
(Vibrational analysis)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874064 and 60777012), the Program for Science and Technology Innovation Talents in Universities of Henan Province in China (Grant No. 2008HASTIT008) and the Program for Science & Technology of Henan, China (Grant Nos. 092300410189). |
Cite this article:
Wang Jie-Min(王杰敏), Sun Jin-Feng(孙金锋), and Shi De-Heng(施德恒) Accurate ab initio study of low-lying electronic states of phosphorus nitride radical 2010 Chin. Phys. B 19 113404
|
[1] |
Ziurys L M 1987 Astrophys. J. 321 L81
|
[2] |
Curry J, Herzberg L and Herzberg G 1933 Z. Phys. 86 348
|
[3] |
Curry J, Herzberg L and Herzberg G 1933 J. Chem. Phys. 1 749
|
[4] |
Ghosh P N and Datta A C 1934 Z. Phys. 87 500
|
[5] |
Raymonda J and Klemperer W 1971 J. Chem. Phys. 55 232
|
[6] |
Wyse F C, Manson E L and Gordy W 1972 J. Chem. Phys. 57 1106
|
[7] |
Moeller M B and Silvers S J 1973 Chem. Phys. Lett. 19 78
|
[8] |
Maki A G and Lovas F J 1981 J. Mol. Spectrosc. 85 368
|
[9] |
Verma R D, Ghosh S N and Iqbal Z 1987 J. Phys. B: At. Mol. Phys. 20 3961
|
[10] |
Coquart B and Prudhomme J C 1980 J. Phys. B: At. Mol. Phys. 13 2251
|
[11] |
Coquart B and Prudhomme J C 1981 J. Mol. Spectrosc. 87 75
|
[12] |
Saraswathy P and Krishnamurty G 1987 J. Phys. 29 53
|
[13] |
Floch A C L, Melen F, Dubois I and Bredohl H 1996 J. Mol. Spectrosc. 176 75
|
[14] |
Ahmad I K and Hamilton P A 1995 J. Mol. Spectrosc. 169 286
|
[15] |
Wu M and Fehlner T P 1975 Chem. Phys. Lett. 36 114
|
[16] |
Bulgin D K, Dyke J M and Morris A 1977 J. Chem. Soc. Faraday Trans. 273 983
|
[17] |
Bredohl H, Breton J, Dubois I, Elafif A, Esteva J M, Macau-Hercot D, Remy F, Saouli A and Some E 1995 J. Mol. Spectrosc. 171 125
|
[18] |
Ghosh S N, Verma R D and Vanderlinde J 1981 Can. J . Phys. 59 1640
|
[19] |
Gottscho R A, Field R W and Lefebvre-Brion H 1978 J. Mol. Spectrosc. 70 420
|
[20] |
Gordon M S, Binkley J S, Pople J A, Pietro W J and Hehre W J 1982 J. Am. Chem. Soc. 104 2797
|
[21] |
Grein F and Kapur A 1983 J. Mol. Spectrosc. 99 25
|
[22] |
Pyykkö P, Diercksen G H F, Müller-Plathe F and Laaksonen L 1987 Chem. Phys. Lett. 134 575
|
[23] |
Peterson K A and Woods R C 1990 J. Chem. Phys. 92 6061
|
[24] |
Wong M W and Radom L 1990 J. Phys Chem. 94 638
|
[25] |
Mclean A D, Liu B and Chandler G S 1992 J. Chem. Phys. 97 8459
|
[26] |
de Brouck`ere G, Feller D, Koot J J A and Berthier G 1992 J. Phys. B: At. Mol. Opt. Phys. 25 4433
|
[27] |
de Brouck`ere G, Feller D and Koot J J A 1993 J. Phys. B: At. Mol. Opt. Phys. 26 1915
|
[28] |
Woon D E and Dunning T H 1994 J. Chem. Phys. 101 8877
|
[29] |
Peterson K A and Dunning T H 2002 J. Chem. Phys. 117 10548
|
[30] |
Kemeny A E, Francisco J S, Dixon D A and Feller D 2003 J. Chem. Phys. 118 8290
|
[31] |
Coriani S, Marchesan D, Gauss J, Hättig C, Helgaker T and Jorgensen P 2005 J. Chem. Phys. 123 184107
|
[32] |
Muniz E P and Jorge F E 2006 Int. J. Quantum. Chem. 106 943
|
[33] |
Cazzoli G, Cludi L and Puzzarini C 2006 J. Mol. Struct. (Theochem). 780--781 260
|
[34] |
Knowles P J and Werner H J 1988 Chem. Phys. Lett. 145 514
|
[35] |
Zhang X N, Shi D H, Sun J F and Zhu Z L 2010 Chin. Phys. B 19 013501
|
[36] |
Zhang X N, Shi D H, Zhang J P, Zhu Z L and Sun J F 2010 Chin. Phys. B 19 053401
|
[37] |
Wang X Q, Yang C L, Su T and Wang M S 2009 Acta Phys. Sin. 58 6873 (in Chinese)
|
[38] |
Werner H J, Knowles P J, Lindh R, Manby F R, Schütz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler T B, Amos R D, Bernhardsson A, Berning A, Cooper D L, Deegan M J O, Dobbyn A J, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia G, Köppl C, Liu Y, Lloyd A W, Mata R A, May A J, McNicholas S J, Meyer W, Mura M E, Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone A J, Tarroni R, Thorsteinsson T, Wang M and Wolf A 2008 MOLPRO, version 2008.1, a package of ab initio programs
|
[39] |
Dunning T H 1989 J. Chem. Phys. 90 1007
|
[40] |
Peterson K A, Kendall R A and Dunning T H 1993 J. Chem. Phys. 99 1930
|
[41] |
Karlström G, Lindh R, Malmqvist P AA, Roos B O, Ryde U, Veryazov V, Widmark P O, Cossi M, Schimmelpfennig B, Neogrady P and Seijo L 2003 Comp. Mater. Sci. 28 222 endfootnotesize
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|