Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 113208    DOI: 10.1088/1674-1056/19/11/113208
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Coherent control of non-resonant two-photon transition in molecular system

Zhang Hui(张晖), Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣)
State Key Laboratory of Precision Spectroscopy, and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  In this paper, we study theoretically and experimentally the coherent control of non-resonant two-photon transition in a molecular system (Perylene dissolved in chloroform solution) by shaping the femtosecond pulses with simple phase patterns (cosinusoidal and $\pi$ phase step-function shape). The control efficiency of the two-photon transition probability is correlated with both the laser field and the molecular absorption bandwidth. Our results demonstrate that, the two-photon transition probability in a molecular system can be reduced but not completely eliminated by manipulating the laser field, and the control efficiency is minimal when the molecular absorption bandwidth is larger than twice the laser spectral bandwidth.
Keywords:  two-photon transition      coherent control      pulse shaping  
Received:  27 January 2010      Revised:  04 March 2010      Accepted manuscript online: 
PACS:  31.15.-p (Calculations and mathematical techniques in atomic and molecular physics)  
  33.80.-b (Photon interactions with molecules)  
Fund: Project supported by Shanghai Leading Academic Discipline Project (Grant No. B408), National Key Program for Basic Research of China (Grant Nos. 2006CB806006 and 2006CB921105), Ministry of Education of China (Grant No. 30800), and Shanghai Municipal Science and Technology Commission (Grant Nos. 07DZ22025, 09142200501 and 09ZR1409300).

Cite this article: 

Zhang Hui(张晖), Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣) Coherent control of non-resonant two-photon transition in molecular system 2010 Chin. Phys. B 19 113208

[1] Hornung T, Meier R, Zeidler D, Kompa K L, Proch D and Motzkus M 2000 Appl. Phys. B 71 277
[2] Assion A, Baumert T, Helbing J, Seyfried V and Gerber G 1996 Chem. Phys. Lett. 259 488
[3] Frasinski L J, Posthumus J H, Plumridge J, Codling K, Taday P F and Langley A J 1999 Phys. Rev. Lett. 83 3625
[4] Bartels R, Backus S, Zeek E, Misoguti L, Vdovin G, Christov I P, Murnane M M and Kapteyn H C 2000 Nature 406 164
[5] Oron D, Dudovich N and Silberberg Y 2003 Phys. Rev. Lett. 90 213902
[6] Zhang X Z, Jia G R and He H F 2007 Chin. Phys. 16 2349
[7] Meshulach D and Silberberg Y 1998 Nature 396 239
[8] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[9] Dudovich N, Dayan B, Faeder S M G and Silberberg Y 2001 Phys. Rev. Lett. 86 47
[10] Dudovich N, Oron D and Silberberg Y 2002 Phys. Rev. Lett. 88 123004
[11] Dudovich N, Oron D and Silberberg Y 2004 Phys. Rev. Lett. 92 103003
[12] Pr"akelt A, Wollenhaupt M, Sarpe-Tudoran C and Baumert T 2004 Phys. Rev. A 70 063407
[13] Barros H G, Ferraz J, Lozano B W, Acioli L H and Vianna S S 2006 Phys. Rev. A 74 055402
[14] Zhang S A, Wang Z G and Sun Z R 2008 Chin. Phys. Lett. 25 2066
[15] Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
[16] Lozovoy V V, Pastirk I, Walowicz K A and Dantus M 2003 J. Chem. Phys. 118 3187
[17] Zhang S A, Sun Z R, Zhang X Y, Xu Y, Wang Z G, Xu Z Z and Li R X 2005 Chem. Phys. Lett. 415 346
[18] Xu Y, Zhang S A, Zhang L, Sun Z R, Zhang X Y, Chen G L, Wang Z G, Li R X and Xu Z Z 2005 Chin. Phys. Lett. 22 2557
[19] Otake I, Kano S S and Wada A 2006 J. Chem. Phys. 124 014501
[20] Zhang S A, Wang Z G and Sun Z R 2008 Chin. Phys. B 17 2914
[21] Zhang S A, Zhang H, Jia T Q, Wang Z G and Sun Z R 2009 Phys. Rev. A 80 043402 endfootnotesize
[1] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[2] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[3] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[4] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[5] Attosecond pulse trains driven by IR pulses spectrally broadened via supercontinuum generation in solid thin plates
Yu-Jiao Jiang(江昱佼), Yue-Ying Liang(梁玥瑛), Yi-Tan Gao(高亦谈), Kun Zhao(赵昆), Si-Yuan Xu(许思源), Ji Wang(王佶), Xin-Kui He(贺新奎), Hao Teng(滕浩), Jiang-Feng Zhu(朱江峰), Yun-Lin Chen(陈云琳), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2020, 29(1): 013206.
[6] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[7] Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses
Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(3): 033201.
[8] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[9] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[10] Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Wang Jun (王俊), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(10): 104205.
[11] On-chip optical pulse shaper for arbitrary waveform generation
Liao Sha-Sha (廖莎莎), Yang Ting (杨婷), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(7): 073201.
[12] Diversity of photonic differentiators based on flexible demodulation of phase signals
Zheng Ao-Ling (郑傲凌), Dong Jian-Ji (董建绩), Lei Lei (雷蕾), Yang Ting (杨婷), Zhang Xin-Liang (张新亮). Chin. Phys. B, 2014, 23(3): 033201.
[13] Optical pulse shaper with integrated slab waveguide for arbitrary waveform generation using optical gradient force
Liao Sha-Sha (廖莎莎), Min Shu-Cun (闵书存), Dong Jian-Ji (董建绩). Chin. Phys. B, 2014, 23(12): 124211.
[14] Selective triggering of phase change in dielectric by femtosecond pulse trains based on electron dynamics control
Xu Chuan-Cai (徐传彩), Jiang Lan (姜澜), Leng Ni (冷妮), Liu Peng-Jun (刘鹏军). Chin. Phys. B, 2013, 22(4): 045203.
[15] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
No Suggested Reading articles found!