|
|
Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses |
Qiu-Nan Tong(佟秋男)1,2, Zhen-Zhong Lian(廉振中)1,2, Liang Zhao(赵亮)1,2, Hong-Xia Qi(齐洪霞)1,2, Zhou Chen(陈洲)1,2, Zhan Hu(胡湛)1,2 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China |
|
|
Abstract The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated. We study the dependence of periodic coherent oscillation of the total ionization yield on the variation of laser phase parameters. The physical mechanism of the strong-field coherent control is investigated experimentally and theoretically by the nonresonant spectral phase interferences in the frequency domain. We show that the intense shaped pulses with broadband and off-resonance can be used as a robust strong-field coherent control method.
|
Received: 26 October 2018
Revised: 14 January 2019
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11374124). |
Corresponding Authors:
Zhou Chen, Zhan Hu
E-mail: phy_cz@jlu.edu.cn;huzhan@jlu.edu.cn
|
Cite this article:
Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛) Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses 2019 Chin. Phys. B 28 033201
|
[1] |
Shapiro M and Brumer P 1986 J. Chem. Phys. 84 4103
|
[2] |
Meshulach D and Silberberg Y 1998 Nature 396 239
|
[3] |
Präkelt A, Wollenhaupt M, Sarpe-Tudoran C and Baumert T 1946 Phys. Rev. A. 70 1
|
[4] |
Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
|
[5] |
Ruge M, Wilcken R, Wollenhaupt M, Horn A and Baumert T 2013 J. Phys. Chem. C 117 11780
|
[6] |
Dudovich N, Oron D and Silberberg Y 2002 Phys. Rev. Lett. 88 123004
|
[7] |
Bayer T, Wollenhaupt M, Sarpe-Tudoran C and Baumert T 2009 Phys. Rev. Lett. 102 023004
|
[8] |
Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2006 Appl. Phys. B 82 183
|
[9] |
Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 J. Opt. B 7 S270
|
[10] |
Wollenhaupt M, Assion A, Bazhan O, Horn C, Liese D, Sarpe-Tudoran C, Winter M and Baumert T 2003 Phys. Rev. A 68 015401(R)
|
[11] |
Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 76 053419
|
[12] |
Clow S and Weinacht T 2010 Phys. Rev. A 82 023411
|
[13] |
Hosseini S A and Goswami D 2001 Phys. Rev. A 64 033410
|
[14] |
Dudovich N, Oron D and Silberberg Y 2004 Phys. Rev. Lett. 92 103003
|
[15] |
Chelkowski S, Bandrauk A D and Corkum P B 2017 Phys. Rev. A 95 053402
|
[16] |
Lucchese R R, Lafosse A, Brenot J C, Guyon P M, Houver J C, Lebech M, Raseev G and Dowek D 2002 Phys. Rev. A 65 020702
|
[17] |
Marceau C, Makhija V, Platzer D, Naumov A Y, Corkum P B, Stolow A, Villeneuve D M and Hockett P 2017 Phys. Rev. Lett. 119 083401
|
[18] |
Tang Y, Suzuki Y I, Horio T and Suzuki T 2010 Phys. Rev. Lett. 104 073002
|
[19] |
Suzuki Y I, Tang Y and Suzuki T 2012 Phys. Chem. Chem. Phys. 14 7309
|
[20] |
Roslund J and Rabitz H 2014 Phys. Rev. Lett. 112 143001
|
[21] |
Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
|
[22] |
Lux C, Senftleben A, Sarpe C, Wollenhaupt M and Baumert T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 02LT01
|
[23] |
Chen Z, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B 24 043303
|
[24] |
Diels J C and Rudolph W 2006 Ultrashort Laser Pulse Phenomena (Second edition) (San Diego: Academic Press) p. 452
|
[25] |
Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409
|
[26] |
Brixner T and Gerber G 2001 Opt. Lett. 26 557
|
[27] |
Li X K, Wang C C, Yuan Z Q, Te D F, Ma P, Hu W H, Kyi S Z, Fu L B and Ding D J 2017 Phys. Rev. A 96 033416
|
[28] |
Brixner T, Krampert G, Niklaus P and Gerber G 2002 Appl. Phys. B 74 S133
|
[29] |
Blanchet V, Nicole C, Bouchene M A and Girard B 1997 Phys. Rev. Lett. 78 2716
|
[30] |
Keldysh L V 1965 Sov. Phys. JETP 20 1307
|
[31] |
Ivanov M Y, Spanner M and Smirnova O 2005 J. Mod. Opt. 52 165
|
[32] |
Bhatt P, Singh R, Yadav N and Shanker R 2012 Phys. Rev. A 85 034702
|
[33] |
Moradm, A, Landers A L and Fogle M 2013 Phys. Rev. A 88 012713
|
[34] |
Chen W and Liu J 2003 J. Phys. Chem. A 107 8086
|
[35] |
Kostko O, Kim S K, Leone S R and Ahmed M 2009 J. Phys. Chem. A 113 14206
|
[36] |
Carroll E C, Pearson B J, Florean A C, Bucksbaum P H and Sension R J 2006 J. Chem. Phys. 124 114506
|
[37] |
Lozovoy V V and Dantus M 2005 Chem. Phys. Chem. 6 1970
|
[38] |
Dudovich N, Polack T, Pe'er A and Silberberg Y 2005 Phys. Rev. Lett. 94 083002
|
[39] |
Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|