Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 033201    DOI: 10.1088/1674-1056/28/3/033201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses

Qiu-Nan Tong(佟秋男)1,2, Zhen-Zhong Lian(廉振中)1,2, Liang Zhao(赵亮)1,2, Hong-Xia Qi(齐洪霞)1,2, Zhou Chen(陈洲)1,2, Zhan Hu(胡湛)1,2
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 Advanced Light Field and Modern Medical Treatment Science and Technology Innovation Center of Jilin Province, Jilin University, Changchun 130012, China
Abstract  

The strong-field coherent control of the nonresonant ionization of nitrous oxide using shaped pulses is investigated. We study the dependence of periodic coherent oscillation of the total ionization yield on the variation of laser phase parameters. The physical mechanism of the strong-field coherent control is investigated experimentally and theoretically by the nonresonant spectral phase interferences in the frequency domain. We show that the intense shaped pulses with broadband and off-resonance can be used as a robust strong-field coherent control method.

Keywords:  coherent control      nonresonant ionization      shaped pulse  
Received:  26 October 2018      Revised:  14 January 2019      Accepted manuscript online: 
PACS:  32.80.Rm (Multiphoton ionization and excitation to highly excited states)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
Fund: 
Project supported by the National Natural Science Foundation of China (Grant No. 11374124).
Corresponding Authors:  Zhou Chen, Zhan Hu     E-mail:  phy_cz@jlu.edu.cn;huzhan@jlu.edu.cn

Cite this article: 

Qiu-Nan Tong(佟秋男), Zhen-Zhong Lian(廉振中), Liang Zhao(赵亮), Hong-Xia Qi(齐洪霞), Zhou Chen(陈洲), Zhan Hu(胡湛) Femtosecond strong-field coherent control of nonresonant ionization with shaped pulses 2019 Chin. Phys. B 28 033201

[1] Shapiro M and Brumer P 1986 J. Chem. Phys. 84 4103
[2] Meshulach D and Silberberg Y 1998 Nature 396 239
[3] Präkelt A, Wollenhaupt M, Sarpe-Tudoran C and Baumert T 1946 Phys. Rev. A. 70 1
[4] Walowicz K A, Pastirk I, Lozovoy V V and Dantus M 2002 J. Phys. Chem. A 106 9369
[5] Ruge M, Wilcken R, Wollenhaupt M, Horn A and Baumert T 2013 J. Phys. Chem. C 117 11780
[6] Dudovich N, Oron D and Silberberg Y 2002 Phys. Rev. Lett. 88 123004
[7] Bayer T, Wollenhaupt M, Sarpe-Tudoran C and Baumert T 2009 Phys. Rev. Lett. 102 023004
[8] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2006 Appl. Phys. B 82 183
[9] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D and Baumert T 2005 J. Opt. B 7 S270
[10] Wollenhaupt M, Assion A, Bazhan O, Horn C, Liese D, Sarpe-Tudoran C, Winter M and Baumert T 2003 Phys. Rev. A 68 015401(R)
[11] Gandman A, Chuntonov L, Rybak L and Amitay Z 2007 Phys. Rev. A 76 053419
[12] Clow S and Weinacht T 2010 Phys. Rev. A 82 023411
[13] Hosseini S A and Goswami D 2001 Phys. Rev. A 64 033410
[14] Dudovich N, Oron D and Silberberg Y 2004 Phys. Rev. Lett. 92 103003
[15] Chelkowski S, Bandrauk A D and Corkum P B 2017 Phys. Rev. A 95 053402
[16] Lucchese R R, Lafosse A, Brenot J C, Guyon P M, Houver J C, Lebech M, Raseev G and Dowek D 2002 Phys. Rev. A 65 020702
[17] Marceau C, Makhija V, Platzer D, Naumov A Y, Corkum P B, Stolow A, Villeneuve D M and Hockett P 2017 Phys. Rev. Lett. 119 083401
[18] Tang Y, Suzuki Y I, Horio T and Suzuki T 2010 Phys. Rev. Lett. 104 073002
[19] Suzuki Y I, Tang Y and Suzuki T 2012 Phys. Chem. Chem. Phys. 14 7309
[20] Roslund J and Rabitz H 2014 Phys. Rev. Lett. 112 143001
[21] Pengel D, Kerbstadt S, Johannmeyer D, Englert L, Bayer T and Wollenhaupt M 2017 Phys. Rev. Lett. 118 053003
[22] Lux C, Senftleben A, Sarpe C, Wollenhaupt M and Baumert T 2016 J. Phys. B: At. Mol. Opt. Phys. 49 02LT01
[23] Chen Z, Tong Q N, Zhang C C and Hu Z 2015 Chin. Phys. B 24 043303
[24] Diels J C and Rudolph W 2006 Ultrashort Laser Pulse Phenomena (Second edition) (San Diego: Academic Press) p. 452
[25] Wollenhaupt M, Präkelt A, Sarpe-Tudoran C, Liese D, Bayer T and Baumert T 2006 Phys. Rev. A 73 063409
[26] Brixner T and Gerber G 2001 Opt. Lett. 26 557
[27] Li X K, Wang C C, Yuan Z Q, Te D F, Ma P, Hu W H, Kyi S Z, Fu L B and Ding D J 2017 Phys. Rev. A 96 033416
[28] Brixner T, Krampert G, Niklaus P and Gerber G 2002 Appl. Phys. B 74 S133
[29] Blanchet V, Nicole C, Bouchene M A and Girard B 1997 Phys. Rev. Lett. 78 2716
[30] Keldysh L V 1965 Sov. Phys. JETP 20 1307
[31] Ivanov M Y, Spanner M and Smirnova O 2005 J. Mod. Opt. 52 165
[32] Bhatt P, Singh R, Yadav N and Shanker R 2012 Phys. Rev. A 85 034702
[33] Moradm, A, Landers A L and Fogle M 2013 Phys. Rev. A 88 012713
[34] Chen W and Liu J 2003 J. Phys. Chem. A 107 8086
[35] Kostko O, Kim S K, Leone S R and Ahmed M 2009 J. Phys. Chem. A 113 14206
[36] Carroll E C, Pearson B J, Florean A C, Bucksbaum P H and Sension R J 2006 J. Chem. Phys. 124 114506
[37] Lozovoy V V and Dantus M 2005 Chem. Phys. Chem. 6 1970
[38] Dudovich N, Polack T, Pe'er A and Silberberg Y 2005 Phys. Rev. Lett. 94 083002
[39] Meshulach D and Silberberg Y 1999 Phys. Rev. A 60 1287
[1] Ultrafast plasmon dynamics in asymmetric gold nanodimers
Bereket Dalga Dana, Alemayehu Nana Koya, Xiaowei Song(宋晓伟), and Jingquan Lin(林景全). Chin. Phys. B, 2022, 31(6): 064208.
[2] Surface plasmon polaritons induced reduced hacking
Bakhtawar, Muhammad Haneef, and Humayun Khan. Chin. Phys. B, 2021, 30(6): 064215.
[3] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[4] Exact analytical results for a two-level quantum system under a Lorentzian-shaped pulse field
Qiong-Tao Xie(谢琼涛), Xiao-Liang Liu(刘小良). Chin. Phys. B, 2020, 29(6): 060305.
[5] Coherent control of fragmentation of methyl iodide by shaped femtosecond pulse train
Qiu-Nan Tong(佟秋男), De-Hou Fei(费德厚), Zhen-Zhong Lian(廉振中), Hong-Xia Qi(齐洪霞), Sheng-Peng Zhou(周胜鹏), Si-Zuo Luo(罗嗣佐), Zhou Chen(陈洲), Zhan Hu(胡湛). Chin. Phys. B, 2019, 28(9): 093201.
[6] Field-free orientation of diatomic molecule via the linearly polarized resonant pulses
Li Su-Yu (李苏宇), Guo Fu-Ming (郭福明), Wang Jun (王俊), Yang Yu-Jun (杨玉军), Jin Ming-Xing (金明星). Chin. Phys. B, 2015, 24(10): 104205.
[7] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
[8] Control of the photoionization/photodissociation processes of cyclopentanone with trains of femtosecond laser pulses
Song Yao-Dong (宋耀东), Chen Zhou (陈洲), Yang Xue (杨雪), Sun Chang-Kai (孙长凯), Zhang Cong-Cong (张丛丛), Hu Zhan (胡湛). Chin. Phys. B, 2013, 22(10): 103301.
[9] Interaction of parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser
Wang Da-Shuai (王大帅), Wu Ge (吴戈), Gao Bo (高博), Tian Xiao-Jian (田小建). Chin. Phys. B, 2013, 22(1): 014207.
[10] Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui(张晖), Zhang Shi-An(张诗按), and Sun Zhen-Rong(孙真荣) . Chin. Phys. B, 2011, 20(8): 083202.
[11] Laser pulse design for coherent control of Rydberg lithium atoms
Zhang Xian-Zhou(张现周), Wu Su-Ling(伍素玲), Jiang Li-Juan(蒋利娟), Ma Huan-Qiang(马欢强), and Jia Guang-Rui(贾光瑞). Chin. Phys. B, 2010, 19(8): 083101.
[12] Coherent control of non-resonant two-photon transition in molecular system
Zhang Hui(张晖), Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2010, 19(11): 113208.
[13] Quantum coherent control of two-photon transitions by square phase-modulation
Zhang Shi-An(张诗按), Wang Zu-Geng(王祖赓), and Sun Zhen-Rong(孙真荣). Chin. Phys. B, 2008, 17(8): 2914-2918.
[14] Two-colour coherent control of multiphoton ionization: a comparison between long-range and short-range potential model atoms
Li Peng-Cheng(李鹏程) and Zhou Xiao-Xin(周效信). Chin. Phys. B, 2007, 16(10): 2946-2951.
No Suggested Reading articles found!