Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(10): 108203    DOI: 10.1088/1674-1056/19/10/108203
CROSS DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Effect of number density on velocity distributions in a driven quasi-two-dimensional granular gas

Sajjad Hussain Shaha)b), Li Yin-Chang(李寅阊)a), and Hou Mei-Ying (厚美瑛)a)b)†
a Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; b Physics Department, Beijing Institute of Technology, Beijing 100081, China
Abstract  The motion of mono-disperse spherical steel particles in a vibration driven quasi-two-dimensional (2D) square cell is studied. The cell is horizontally vibrated to eliminate the effect of gravity compaction. The velocity distributions at different particle number densities are studied and found to obey the form $\exp[-\beta(|v_y|/\sigma_y)^{\alpha}]$, in which $v_y$ and $\sigma_y$ are velocity and its variance in the transverse direction, and $\alpha$ and $\beta$ are fitting parameters. The value of $\alpha$ is found to decrease with the number density of particles increasing. To investigate the effect of the bottom plate, the molecular dynamics simulation without considering any bottom friction is performed. The accordance between the simulation result and the experimental result shows that the influence of bottom plate friction force on the high energy tail of the velocity distribution can be neglected.
Keywords:  granular matter      velocity distribution  
Received:  26 February 2010      Revised:  01 April 2010      Accepted manuscript online: 
PACS:  46.55.+d (Tribology and mechanical contacts)  
  46.70.De (Beams, plates, and shells)  
  62.20.Qp (Friction, tribology, and hardness)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10720174 and 10874209), and the Innovation Foundation of the Chinese Academy of Sciences (Grant Nos. KKCX1-YW-03 and KJCX2-YW-L08).

Cite this article: 

Sajjad Hussain Shah, Li Yin-Chang(李寅阊), and Hou Mei-Ying (厚美瑛) Effect of number density on velocity distributions in a driven quasi-two-dimensional granular gas 2010 Chin. Phys. B 19 108203

[1] Jaeger H M, Nagel S R and Behringer R P 1996 Rev. Mod. Phys. 68 1259
[2] Liu R, Li Y C and Hou M Y 2008 Acta Phys. Sin. 57 4660 (in Chinese)
[3] Jiang Y M and Zheng H P 2008 Acta Phys. Sin. 57 7360 (in Chinese)
[4] Sun Q C and Wang G Q 2008 Acta Phys. Sin. 57 4667 (in Chinese)
[5] Peng Z, Hou M Y, Shi Q F and Lu K Q 2007 Acta Phys. Sin. 56 1195 (in Chinese)
[6] Williams D R M and Mackintosh F C 1996 Phys. Rev. E 54 R9
[7] Moon S J, Shattuck M D and Swift J B 2001 Phys. Rev. E 64 031303
[8] Du Y, Li H and Kadanoff L P 2001 Phys. Rev. E 64 050301
[9] Barrat A and Trizac E 2002 Phys. Rev. E 66 051303
[10] Rouyer F and Menon N 2000 Phys. Rev. Lett. 85 3676
[11] Olafsen J S and Urbach J S 1999 Phys. Rev. E 60 R2468
[12] Zhou T and Kadanoff L P 1996 Phys. Rev. E 54 623
[13] Lsert W, Copper D, Delour J, Kudrolli A and Gollub J P 1999 Chaos 9 682
[14] Blair D L and Kudrolli A 2001 Phys. Rev. E 64 050301
[15] Hou M Y, Liu R, Zhai G J, Sun Z B, Lu K Q, Garrabos Y and Evesque P 2008 Microgravity Science and Technology 20 73
[16] Vanzon J S and Mackintosh F C 2004 Phys. Rev. Lett. 93 038001
[17] Reis P M, Ehrhart G and Stephenson A 2004 Euro. Phys. Lett. 66 357
[18] Painter B and Behringer R P 2000 Phys. Rev. E 62 2380 endfootnotesize
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[3] Correlation mechanism between force chains and friction mechanism during powder compaction
Ning Zhang(张宁), Shuai Zhang(张帅), Jian-Jun Tan(谈健君), and Wei Zhang(张炜). Chin. Phys. B, 2022, 31(2): 024501.
[4] Rolling velocity and relative motion of particle detector in local granular flow
Ran Li(李然), Bao-Lin Liu(刘宝林), Gang Zheng(郑刚), and Hui Yang(杨晖). Chin. Phys. B, 2022, 31(11): 114501.
[5] In situ measurement on nonuniform velocity distributionin external detonation exhaust flow by analysis ofspectrum features using TDLAS
Xiao-Long Huang(黄孝龙), Ning Li(李宁), Chun-Sheng Weng(翁春生), and Yang Kang(康杨). Chin. Phys. B, 2022, 31(1): 014703.
[6] Influence of an inserted bar on the flow regimes in the hopper
Yi Peng(彭毅), Sheng Zhang(张晟), Mengke Wang(王梦柯), Guanghui Yang(杨光辉), Jiangfeng Wan(万江锋), Liangwen Chen(陈良文), and Lei Yang(杨磊). Chin. Phys. B, 2021, 30(2): 028101.
[7] Avalanching patterns of irregular sand particles in continual discrete flow
Ren Han(韩韧), Yu-Feng Zhang(张宇峰), Ran Li(李然), Quan Chen(陈泉), Jing-Yu Feng(冯靖禹), Ping Kong(孔平). Chin. Phys. B, 2020, 29(2): 024501.
[8] Collective transport of Lennard–Jones particles through one-dimensional periodic potentials
Jian-hui He(何健辉), Jia-le Wen(温家乐), Pei-rong Chen(陈沛荣), Dong-qin Zheng(郑冬琴), Wei-rong Zhong(钟伟荣). Chin. Phys. B, 2017, 26(7): 070502.
[9] The anisotropy of free path in a vibro-fluidized granular gas
Yifeng Mei(梅一枫), Yanpei Chen(陈延佩), Wei Wang(王维), Meiying Hou(厚美瑛). Chin. Phys. B, 2016, 25(8): 084501.
[10] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
[11] Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe
Liu Yu (刘煜), Zhao Jun-Hong (赵俊红). Chin. Phys. B, 2015, 24(3): 034502.
[12] Molecular dynamics simulations of the nano-droplet impact process on hydrophobic surfaces
Hu Hai-Bao (胡海豹), Chen Li-Bin (陈立斌), Bao Lu-Yao (鲍路瑶), Huang Su-He (黄苏和). Chin. Phys. B, 2014, 23(7): 074702.
[13] Effect of size polydispersity on the structural and vibrational characteristics of two-dimensional granular assemblies
Zhang Guo-Hua (张国华), Sun Qi-Cheng (孙其诚), Shi Zhi-Ping (石志萍), Feng Xu (冯旭), Gu Qiang (顾强), Jin Feng (金峰). Chin. Phys. B, 2014, 23(7): 076301.
[14] Properties of surface waves in granular media under gravity
Zheng He-Peng (郑鹤鹏). Chin. Phys. B, 2014, 23(5): 054503.
[15] Stress distribution and surface instability of an inclined granular layer
Zheng He-Peng (郑鹤鹏), Jiang Yi-Min (蒋亦民), Peng Zheng (彭政). Chin. Phys. B, 2013, 22(4): 040511.
No Suggested Reading articles found!